Modeling Time-Varying Processes by Unfolding the Time Domain

Lars Kindermann? & Thomas P. Trappenbergb

a FORWISS, Bavarian research center for knowledge based systems, Germany, kindermann@forwiss.de
b RIKEN Brain Science Institute, Lab. for Information Synthesis, Japan, thomas@brain.riken.go.jp

Abstract

Most current technologies in modeling time varying
processes aim to adapt a static model over time in what
has become to be known as continuous learning. We
propose here a different approach to the same problem
domain that of including the time explicitly in the
modeling. An example implementation of this strategy is
given in form of a multilayer perceptron with explicit time
input. The performance of this approach is evaluating on a
benchmark that was constructed to illustrate typical
problems in industrial applications.

Introduction

The environment in which we live is not static, it can
change rapidly over time. Hence, it is important for us to
be able to adapt continuously to new situations, and our
ability of ongoing learning is thought to be instrumental in
coping with such changing environments. It is this kind of
adaptation in time-varying systems that we aim to attack
with continuous learning procedures [1]. A major problem
for such procedures is thereby the plasticity-stability
dilemma [2], that of keeping previous acquired knowledge
(stability) while enabling optimal adaptation to new
situations (plasticity).

Time varying systems can also be a major complication in
controlling industrial processes. For examples, picture a
production facility such as a steel rolling mill. The
obsolescence of individual components does typically lead
to a time varying behavior of the whole machine on a time
scale dependent on the wearing process. Furthermore, the
machine might be used in different production modes such
as the rolling of different types of steel on a daily or
weekly basis. Models of such machines, which are
necessary for the control process, have to be able to
account for the changing characteristics of the machine
over time. In addition, the modeling of time varying
processes of real-world applications is often complicated
by at least two more problems [3]. First, the processes we

aim to describe are most often highly non-linear so that
conceptually more difficult non-linear models have to be
derived. Secondly, sample data of the process that we aim
to model are often sparse either in time, or in the possible
state space of the process, or in both domains.

Current technology targeting continuous learning focus on
locally adaptive methods like RBF networks, local linear
maps, or hybrid systems (see [4] and references therein) as
they can easily be constructed to change only in regions
where new data arrives and stay stable elsewhere. Those
approaches do in effect try to separate the time domain
from the model itself, which we think is not always
justified. We propose to include the time domain as
parametric input in the modeling of the inherently time
dependent process. This simple strategy has, to our
knowledge, not yet been explored in the area of continuous
learning. Our results show that this strategy should indeed
be considered.

Problem illustration

Our aim is to approximate an unknown time varying
process

y=y(x,t)+n()

from examples (training set), where x stands for the
parametric degrees of freedoms of the model and n
represents a stochastic process (noise) that itself can be
time dependent. An example of a time varying process
without noise and only one degree of freedom beside the
temporal domain is illustrated in Figure 1. The training set
from which the system surface has to be reconstructed is
shown in the figure with dots on the function surface. This
training set consists of one training example at each time
step in a sequence of discrete time steps. A working point
process that is independent of the time varying process we
try to model thereby determines the corresponding x-values
of the training points. Such training sets are typically
produced by measurements of the machine characteristics
during operation.



i

Outputy —»

Figure 1: Example of a function y(x) that changes in time.
Only one training point is available for each time value
(dots on the function surface). The task at time t is to
predict the shape of y(x) at time t+1.

In practical applications it is often desired to make
predictions of the function (machine characteristics) at the
next time step. This is typically needed for control
purposes. However, a global model can also be desired,
for example in optimization applications or when a
production machine should be switched to a new operation
mode.

Several datasets with similar examples have been produced
by Protzel et al. to illustrate typical circumstances in
modeling industrial processes and have been used in the
NIPS’98 Workshop on Continuous Learning to compare
different methods [5]. These benchmark datasets, which
can be accessed over the Internet, were generated by AR(3)
processes to which discontinuities and sometimes noise
was added. Two datasets (A and B) have 10 input
parameters (one of which was obsolete) with 10.000
training points. Dataset A corresponds thereby to dataset B
without noise. Datasets C-E are generated by the same time
dependent process with two input parameters and have all
2000 training data. They only differ in the way the first
1800 training points are chosen.

A set goal of these benchmarks is to enable comparative
discussions with two kinds of prediction tasks. The one-
step-prediction-task was to predict the function at each
consecutive time step at the parameter values given in the
training set from the data seen until the previous time step.
In the model-evaluation-task the global approximation of
the function at the final time step was evaluated at the
points given by an evaluation set which is included in the
benchmarks.

Method

Contrary to most existing methods of continuous learning
we propose to include the time domain explicitly in the
model. To model the time varying processes of the bench-
marks described in the previous section we used a simple
multilayer perceptron (MLP) that receives the available
data (which we termed parameter input). The central idea
of our method described here is that we included in
addition an artificial input stream of data representing the
ongoing time. This is illustrated in Figure 2.

Parameter
Input

Figure 2: MLP with additional input representing the time.

The inclusion of the additional time-input increases the
dimensionality of the model, which is realized by the MLP,
by 1 and has the effect of an explicit unfolding of the time
domain. This avoids the stability-plasticity dilemma
because the time-varying n-dimensional process is mapped
to a n+l-dimensional static function. While adaptive
methods have to deal with the order and the time the data
arrives, our method on the other hand models the behavior
in time inherently by trying to approximate the n+I-
dimensional function surface instead of its n-dimensional
projection (see figure 1). Therefore it is well suited for a
short-term extrapolation in any dimension, including the
time domain, so that it can be used in forecasting.

The general idea is not restricted to MLP type networks.
Practically any architecture can profit by this simple trick.
Indeed, Back and Chen [6] and Back [7] have discussed
similar techniques in conjunction with hybrid systems that
included recurrent networks. However, contrary to these
hybrid system applications, we discuss in this paper the
general strategy of increasing the degree of freedom of the
network model for applications in continuous learning
problems.

Results

All results for the prediction tasks of the Continuous
Learning benchmarks [5] were achieved by using a simple
MLP with 20 sigmoidal hidden nodes and a linear output
nodes. This network was incrementally trained on all



available data up to one time step before the time for which
predictions were made. In the case of data set A and B we
trained the network only ever 10 time steps, whereas the
predictions for the other data sets where done with
incremental learning after each new arrival of a training
data. In all cases we employed the LM algorithm for
training with only up to 5 training epochs for each
additional training session.

The performance of the network in the one step prediction
task was evaluated with the Normalized Mean Square
Error (NMSE) defined by

NMSE(t,) = G%(t) (v(t,)=3(t,))

for each time step ¢y, for which the prediction was made.
The value 6 represents thereby the variance of all the data
up to time t,. Hence, only a value of NMSE below 1
indicates a prediction that is better than just predicting the
mean value of the available data.

The values for NMSE for the one step ahead predictions of
datasets A-E are shown on a logarithmic scale in the left
column of Figure 3. In the right column we display a
failure rate which counts the relative number of NMSE
values above 1 in a sliding window of 100 time steps. After
a short transient period most of the data of the dataset A
and D-E have been predicted often with high accuracy.

Our method was not able to cope with dataset B that was
analog with dataset A except that it also included noise.
Noise can be regarded as an unstructured time dependent
process. It is hence obvious that our method is not able to
model this kind of variations. Further methods to separate
structured time dependencies from unstructured variations
(noise) have to be included in such circumstances.

The failure rates of datasets C-E all show a peak after time
step 760 at which the benchmark function had a
discontinuity with a relatively large step value. Such
‘jumps’ in the target function are a major challenge for all
existing methods. Our network was able to adjust to the
new situation after a short transient period. A smaller
discontinuity at time step 573 had not this drastic effect.

Figure 4 shows a comparison of different algorithms for
the global model evaluation at t=2001 for dataset C. While
the other methods sometimes achieved locally more
accurate results, the method discussed in this paper was the
only one which captured the general structure of the
underlying problem reasonable well. This can be expected
in particular when the available data allow the MLP to
interpolate. Extrapolations of MLPs are known to be poor.

NMSE failure rate

1] 5000 10000 i] 5000 10000

0 a000 10000

D.QL\n nn‘_

. 0 0
1} 500 1000 1500 2000 0 00 7000 1500 2000

0.4
v WPA K\
0 ro—rTan, ey
500

1} 800 1000 1500 2000 0 1000 1500 2000

Al

1] 500 1000 1500 2000 i] 500 1000 1500 2000

time time

Figure 3. Normalized Mean Square Error (left column)
and failure rate (vight column) in the one step prediction

for all data sets of the NIPS’98 benchmarks.

Conclusion

Continuous learning and the modeling of time varying
processes are becoming most important in applications
such as controlling industrial processes. An easy approach
for modeling time varying processes is proposed and tested
on figurative benchmarks with excellent results. The MLP
with the additional input of time gave comparable results
and in most cases even clearly outperformed all adaptive



(b)

(©

(d)

Figure 4: (a) The target function with most recent training
points. (b)-(d) Approximations by different methods. Dark
shades correspond to good results while light areas denote
large errors. (b) Adaptive local linear maps. (¢) Steady
state space model. (d) MLP with additional time input.

methods, both in the one-step-prediction-task and in the
model-evaluation-task. By avoiding dealing with explicit
adaptation, the stability-plasticity dilemma is circumvented
and much simpler algorithms like standard MLPs can be
used.

Although we have used a simple MLP in the benchmark
examples discussed in this paper it should be stressed that
the method is not restricted to these architectures. Indeed,
MLPs are known to have poor performance in function
extrapolation and in regions with limited training
examples. An additional estimation of reliability of the
predictions as proposed in [8] should therefore be included
in the method.

The effort of our method is minimal so that it should be
applied before considering more complicated methods. To
find out if an application will benefit from the additional
time input, input variable selection methods, which
evaluate the significance of each input, can be useful. Such
a method using independent component analysis and higher
order statistics is proposed in [9].

References

[1] S. Haykin, Neural Networks, A Comprehensive Foundation,
second edition, Prentice Hall, 1999.

[2] S. Grossberg, Neural Networks and Natural Intelligence,
MIT Press, Cambridge, 1988.

[3] P. Prozel, L. Kindermann, M. Tagscherer and A.
Lewandowski, Computational Intelligence: Neuronale Netze,
Evolutiondire Algorithmen, Fuzzy Control im industriellen
Einsatz, VDI Berichte 1381, VDI Verlag, Diisseldorf, 1998, pp.
347-359.

[4] M. Tagscherer, P. Protzel, Adaptive Input-Space Clustering
for Continuous Learning Tasks, Proceedings in Artificial
Intelligence —FNS°98, Munich, Germany, 1998, pp. 352-358.

[5] P. Prozel, L. Kindermann, A. Lewandowski and M.
Tagscherer, Continuous Learning Benchmarks,
http://www.forwiss.uni-erlangen.de/aknn/cont-learn/cl-
benchmarks-NIPS98.html

[6] A.D. Back, T.-P. Chen, Approxiamtion of Hybrid Systems by
Neural Networks, Proceedings of ICONIP 1997.

[7] A.D. Back, Multiple and time varying dynamic modeling
capable of recurrent neural networks, Proc. Of the 1977 IEEE
Workshop for Signal Processing 7, 1977.

[8] L. Kinermann, A. Lewandowski, M. Tagscherer, P. Prozel,
Computing Confidence Measures and Marking Unreliable
Predictions by estimating Input Data Densities with MLPs,
submitted to ICONIP*99.

[9] A.D. Back and T.P. Trappenberg, Input variable selection
using independent component analysis, IJJCNN’99.



	Problem illustration
	Method
	Results
	Conclusion
	References

