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Three kinds of learning:

1. Supervised learning

Detailed teacher that provides desired output y for a given
input x: training set {x,y}
- find appropriate mapping function y=h(x;w) [=W @(x) ]

2. Unsupervised Learning

Unlabeled samples are provided from which the system has to
figure out good representations: training set {x}
—> find sparse basis functions b, so that x=2. c. b,

3. Reinforcement learning

Delayed feedback from the environment in form of reward/
punishment when reaching state s with action a: reward r(s,a)
- find optimal policy a=mt*(s)

Most general learning circumstances



Maximize expected Utility
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2. Reinforcement learning

From Russel and Norvik



Markov Decision Process (MDP)
(S,A,T(s'|s,a), R(r|s,a),8)

S is a set of states.
A is a set of actions.

T'(s'|s,a) is a transition probability, for reaching state s’ when taking action
a from state s. This transition probability only depends on the previous state,
which is called the Markov condition; hence the name of the process.

R(r|s) is the probability of receiving reward when getting to state s. This
quantity provides feedback from the environment. r is a numeric value with
positive values indicating reward and negative values indicating punishment.

6 are specific parameters for some of the different kinds of RL settings. This
will be the discount factor -y in our first examples.



Two important quantities

policy: w(als)

value function:

Q" (s,a) = E{r(s) +yr(s1) +v*r(s2) +¥°r(s3) + ..}«

Goal: maximize total expected payoff
Q*(s,a) = maxQ™(s,a)
1y
Optimal Control

7" (a|s) = arg max Q" (s,a)



Calculate value function (dynamic programming)

e @(5,0)=V7(5)
VT(s) = E{r(s)+r(s1) +7°r(s2) +7°r(s3) + ..}«
= E{r(s)}n +YE{r(s1) + 1 (s2) + 7Y7(85) + .}
r(s) +7 ) T(s'|s,a)E{r(s') + YR(s}) + ¥’ R(s5) + ...}x

Bellman Equation for policy nt

Solution: Analytic or Incremental

r=(1—-~4T)V™
V<r+~4TV
Richard Bellman V™ = (1 — 'yT)_lrt
1920-1984




Remark on different formulations:

Some (like Sutton, Alpaydin, but not Russel & Norvik) define the value as the reward
at the next state plus all the following reward:

V7T(s) = (r(s") +7T(s'|s,a)V7(s"))
instead of

V™(s) =r(s) + “/ZT(3’|3, a)V™(s").



Policy Iteration

Choose initial policy and value function
Repeat until policy is stable {
1. Policy evaluation
Repeat until change in values is sufficiently small {
For each state {
Calculate the value of neighbouring states when taking -
action according to current policy.
Update estimate of optimal value function.
} each state
} convergence
2. Policy improvement
new policy according to equation 10.21, assuming V* = current V"™

} policy



Value Iteration

Bellman Equation for optimal policy

V*(s) =r(s) + mngZT(sﬂs, a)V*(s")

Choose initial estimate of optimal value function
Repeat until change in values is sufficiently small {
For each state {
Calculate the maximum expected value of neigh-
bouring states for each possible action.
Use maximal value of this list to update estimate
of optimal value function.
} each state
} convergence
Calculate optimal value function from equation 10.21



Solution:

3 | o812 | osee | oote | [£1] 3| —= | —- | —-
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But:

Environment not known a priori = QOnline (TD)
Observability of states -> POMDP
Curse of Dimensionality — Model-based RL



POMDP:

Partially observable MDPs can be reduced to MDPs by
considering believe states b:

Q(s,a) =+ Y vP(¥|b,a)Q(s', a)
g



What if the environment is not completely known ?

Online value function estimation (TD learning)

If the environment is not known,
use Monte Carlo method with bootstrapping

V7(s) = V™(s) + afr(s) +yV7(s") = V7™(s)}
\ )
Y \
Expected payoff
/ before taking step
Expected reward after taking step =
actual reward plus discounted expected payoff of next step

Temporal Difference



Online optimal control: Exploitation versus Exploration

e-greedy policy 7(a =argmax(@(s,a)) =¢€

£Q(s,0)
Za’ eQ(s,a’)

softmax policy m(als) =

On-policy TD learning: Sarsa

Q(s,a) < Q(s,a) + afr(s) +vQ(s',a’) — Q(s,a)}
Off-policy TD learning: Q-learning
Q(s,a) « Q(s,a) + afr(s) + rrz@xq'Q(s', a') —Q(s,a)}



Model-based RL: TD(1)

Instead of tabular methods as mainly discussed before, use
function approximator with parameters 0 and gradient descent

step (Satton 1988):
Vi(x:) =~ Vi(x¢;0)

For example by using a neural network with weights 6 and
corresponding delta learning rule

T 8%
Al = aZ(r -V 50

when updating the weights after an episode of m steps.
The only problem is that we receive the feedback r only after the

t-th step. So we need to keep a memory (trace) of the sequence.



Model-based RL: TD(1) ... alternative formulation

We can write

m

r—V, = Z(Vk+1 - Vi)

An putting this into the formula and rearranging the sum gives

T Tre

Af = QZZ(VH-I - VA)GVt
t k=t

T

= QZ(Vt+1 - Vi) Z Al

We still need to keep the cumulative sum of the derivative terms,
but otherwise it looks already closer to bootstrapping.



Model-based RL: TD(A)

We now introduce a new algorithm by weighting recent gradients
more than ones in the distance

kOVk

12
A = (Ve = V) Y N

k=1

This is called the TD(A) rule. For A=1 we recover the TD(1) rule.
Interesting is also the the other extreme of TD(0)

oV,
Al = a(Vt+1 - Vi (')_Ot

Which uses the prediction of V(t+1) as supervision signal for step
t. Otherwise this is equivalent to supervised learning and can
easily be generalized to hidden layer networks.



Free-Energy-Based RL:

This can be generalized to Boltzmann machines
(Sallans & Hinton 2004)

Paul Hollensen:
Sparse, topographic RBM successfully learns to drive the e-puck and avoid

obstacles, given training data (proximity sensors, motor speeds)







Classical Conditioning

lvan Pavlov
1849-1936
Nobel Prize 1904

Rescorla-Wagner Model (1972)



Reward Signals in the Brain

|l sec Wolfram Schultz
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Disorders with effects
On dopamine system:

Projection types

Parkinson’ s disease

: SNc GPi/SNr » Excitatory
Tourett s syndrome — @ |Inhibitory
ADHD ——4& Modulatory

Drug addiction
Schizophrenia

Maia & Frank 2011



Conclusion and Outlook

Three basic categories of learning:

Supervised: Lots of progress through statistical learning theory
Kernel machines, graphical models, etc

Unsupervised: Hot research area with some progress,
deep temporal learning

Reinforcement: Important topic in animal behavior,
model-based RL



