
conveys predictions. Presumably what Clark really means to say
is that the standard implementation of PC proposes that
inter-regional feedforward connections carry error, whereas
inter-regional feedback connections carry predictions (while infor-
mation flow in the reverse directions takes place within each cor-
tical area). However, this is simply one hypothesis about how PC
should be implemented in cortical circuitry. It is also possible to
group neural populations differently so that inter-regional feed-
forward connections carry predictions, not errors (Spratling
2008b).

As alternative implementations of the same computational
theory, these two ways of grouping neural populations are compa-
tible with the same psychophysical, brain imaging, and neurophy-
siological data reviewed in section 3.1 of the target article.
However, they do suggest that different cortical circuitry may
underlie these outward behaviours. This means that claims
(repeated by Clark in sect. 2.1) that prediction neurons corre-
spond to pyramidal cells in the deep layers of the cortex, while
error-detecting neurons correspond to pyramidal cells in super-
ficial cortical layers, are not predictions of PC in general, but pre-
dictions of one specific implementation of PC. These claims,
therefore, do not constitute falsifiable predictions of PC (if they
did then the idea that PC operates in the retina – as discussed in
sect. 1.3 – could be rejected, due to the lack of cortical pyramidal
cells in retinal circuitry!). Indeed, it is highly doubtful that these
claims even constitute falsifiable predictions of the standard
implementation of PC. The standard implementation is defined
at a level of abstraction above that of cortical biophysics: it con-
tains many biologically implausible features, like neurons that
can generate both positive and negative firing rates. The
mapping between elements of the standard implementation of
PC and elements of cortical circuitry may, therefore, be far less
direct than is suggested by the claim about deep and superficial
layer pyramidal cells. For example, the role of prediction
neurons and/or error-detecting neurons in the model might be
performed by more complex cortical circuitry made up of
diverse populations of neurons, none of which behave like the
model neurons but whose combined action results in the same
computation being performed.

The fact that PC is typically implemented at a level of abstrac-
tion that is intermediate between that of low-level, biophysical,
circuits and that of high-level, psychological, behaviours is a
virtue. Such intermediate-level models can identify common com-
putational principles that operate across different structures of the
nervous system and across different species (Carandini 2012; Phil-
lips & Singer 1997); they seek integrative explanations that are
consistent between levels of description (Bechtel 2006; Mareschal
et al. 2007), and they provide functional explanations of the
empirical data that are arguably the most relevant to neuroscience
(Carandini et al. 2005; Olshausen & Field 2005). For PC, the
pursuit of consistency across levels may prove to be a particularly
important contribution to the modelling of Bayesian inference.
Bayes’ theorem states that the posterior is proportional to the
product of the likelihood and the prior. However, it places no con-
straints on how these probabilities are calculated. Hence, any
model that involves multiplying two numbers together, where
those numbers can be plausibly claimed to represent the likeli-
hood and posterior, can be passed off as a Bayesian model. This
has led to numerous computational models which lay claim to
probabilistic respectability while employing mechanisms to
derive “probabilities” that are as ad-hoc and unprincipled as the
non-Bayesian models they claim superiority over. It can be
hoped that PC will provide a framework with sufficient constraints
to allow principled models of hierarchical Bayesian inference to
be derived.

A final point about different implementations is that they are
not necessarily all equal. As well as implementing the PC theory
using different ways of grouping neural populations, we can also
implement the theory using different mathematical operations.
Compared to the standard implementation of PC, one alternative

implementation (PC/BC) is mathematically simpler while explain-
ing more of the neurophysiological data: Compare the range of V1
response properties accounted for by PC/BC (Spratling 2010;
2011; 2012a; 2012b) with that simulated by the standard
implementation of PC (Rao & Ballard 1999); or the range of atten-
tional data accounted for by the PC/BC implementation (Spratling
2008a) compared to the standard implementation (Feldman &
Friston 2010). Compared to the standard implementation, PC/
BC is also more biologically plausible; for example, it does not
employ negative firing rates. However, PC/BC is still defined at
an intermediate-level of abstraction, and therefore, like the stan-
dard implementation, provides integrative and functional expla-
nations of empirical data (Spratling 2011). It can also be
interpreted as a form of hierarchical Bayesian inference (Loch-
mann & Deneve 2011). However, it goes beyond the standard
implementation of PC by identifying computational principles
that are shared with algorithms used in machine learning, such
as generative models, matrix factorization methods, and deep
learning architectures (Spratling 2012b), as well as linking to
alternative theories of brain function, such as divisive normalisa-
tion and biased competition (Spratling 2008a; 2008b). Other
implementations of PC may in future prove to be even better
models of brain function, which is even more reason not to
confuse one particular implementation of a theory with the
theory itself.

Sparse coding and challenges for Bayesian
models of the brain
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Abstract: While the target article provides a glowing account for the
excitement in the field, we stress that hierarchical predictive learning in
the brain requires sparseness of the representation. We also question
the relation between Bayesian cognitive processes and hierarchical
generative models as discussed by the target article.

Clark’s target article captures well our excitement about predic-
tive coding and the ability of humans to include uncertainty in
making cognitive decisions. One additional factor for represen-
tational learning to match biological findings that has not been
stressed much in the target article is the importance of sparseness
constraints. We discuss this here, together with some critical
remarks on Bayesian models and some remaining challenges
quantifying the general approach.
There are many unsupervised generative models that can be

used to learn representations to reconstruct input data. Consider,
for example, photographs of natural images. A common method
for dimensionality reduction is principle component analysis
that represents data along orthogonal feature vectors of decreas-
ing variance. However, as nicely pointed out by Olshausen and
Field (1996), the corresponding filters do not resemble receptive
fields in the brain. In contrast, if a generative model has the
additional constraint to minimize not only the reconstruction
error but also the number of basis functions that are used for
any specific image, then filters emerge that resemble receptive
fields of simple cells in the primary visual cortex.
Sparse representation in the neuroscientific context actually has

a long and important history. Horace Barlow pointed out for years
that the visual system seems to be remarkably set up for sparse
representations (Barlow 1961), and probably the first systematic
model in this direction was proposed by his student Peter
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Földiák (1990). It seems that nearly every generative model with a
sparseness constraint can reproduce receptive fields resembling
simple cells (Saxe et al. 2011), and Ng and colleagues have
shown that sparse hierarchical Restricted Boltzmann Machines
(RBMs) resembles features of receptive fields in V1 and V2
(Lee et al. 2008). In our own work, we have shown how lateral
inhibition can implement sparseness constrains in a biological
way while also promoting topographic representations (Hollensen
& Trappenberg 2011).

Sparse representation has great advantages. By definition, it
means that only a small number of cells have to be active to repro-
duce inputs in great detail. This not only has advantages energeti-
cally, it also represents a large compression of the data. Of course,
the extreme case of maximal sparseness corresponding to grand-
mother cells is not desirable, as this would hinder any generaliz-
ation ability of a model. Experimental evidence of sparse coding
has been found in V1 (Vinje & Gallant 2000) and hippocampus
(Waydo et al. 2006).

The relation of the efficient coding principle to free energy is
discussed by Friston (2010), who provides a derivation of free
energy as the difference between complexity and accuracy. That
is, minimizing free energy maximizes the probability of the data
(accuracy), while also minimizing the difference (cross-entropy)
between the causes we infer from the data and our prior on
causes. The fact that the latter is termed complexity reflects our
intuition that causes in the world lie in a smaller space than
their sensory projections. Thus, our internal representation
should mirror the sparse structure of the world.

While Friston shows the equivalence of Infomax and free
energy minimization given a sparse prior, a fully Bayesian
implementation would treat the prior itself as a random variable
to be optimized through learning. Indeed, Friston goes on to
say that the criticism of where these priors come from “dissolves
with hierarchical generative models, in which the priors them-
selves are optimized” (Friston 2010, p. 129). This is precisely
what has not yet been achieved: a model which learns a sparse rep-
resentation of sensory messages due to the world’s sparseness,
rather than due to its architecture or static priors. Of course, we
are likely endowed with a range of priors built-in to our evolved
cortical architecture in order to bootstrap or guide development.
What these native priors are and the form they take is an interest-
ing and open question.

There are two alternatives to innate priors for explaining the
receptive fields we observe. First, there has been a strong ten-
dency to learn hierarchical models layer-by-layer, with each layer
learning to reconstruct the output of the previous without being
influenced by top-down expectations. Such top-down modulation
is the prime candidate for expressing empirical priors and influen-
cing learning to incorporate high-level tendencies. Implementing
a model that balances conforming to both its input and top-down
expectations while offering efficient inference and robustness is a
largely open question (Jaeger 2011). Second, the data typically
used to train our models on differs substantially from what we
are exposed to. The visual cortex experiences a stream of images
with substantial temporal coherence and correlation with internal
signals such as eye movements, limiting the conclusions we can
draw from comparing its representation to models trained on
static images (see, e.g., Rust et al. 2005).

The final comment we would like to make here concerns the
discussion of Bayesian processes. Bayesian models such as the
ideal observer have received considerable attention in neuro-
science since they seem to nicely capture human abilities to
combine new evidence with prior knowledge in the “correct”
probabilistic sense. However, it is important to realize that
these Bayesian models are very specific to limited experimental
tasks, often with only a few possible relevant states, and such
models do not generalize well to changing experimental con-
ditions. In contrast, the Bayesian model of a Boltzmann
machine represents general mechanistic implementations of
information processing in the brain that we believe can

implement a general learning machine. While all these models
are Bayesian in the sense that they represent causal models
with probabilistic nodes, the nature of the models are very differ-
ent. It is fascinating to think about how such specific Bayesian
models as the ideal observer can emerge from general learning
machines such as the RBM. Indeed, such a demonstration
would be necessary to underpin the story that hierarchical gen-
erative models support the Bayesian cognitive processing as dis-
cussed in the target article.
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Abstract: The target article sketched and explored a mechanism
(action-oriented predictive processing) most plausibly associated
with core forms of cortical processing. In assessing the
attractions and pitfalls of the proposal we should keep that
element distinct from larger, though interlocking, issues
concerning the nature of adaptive organization in general.

R1. Introduction: Combining challenge and delight

The target article (“Whatever next? Predictive brains, situ-
ated agents, and the future of cognitive science” – hence-
forth WN for short) drew a large and varied set of
responses from commentators. This has been a source of
both challenge and delight. Challenge, because the variety
and depth of the commentaries really demands (at least) a
book-length reply, not to mention far more expertise than
I possess. Delight, because the wonderfully constructive
and expansive nature of those responses already paints a
far richer picture of both the perils and the prospects of
the emerging approach to cortical computation that I
dubbed “action-oriented predictive processing” (henceforth
PP for short). Inwhat follows I respond, at least in outline, to
three main types of challenge (the “perils” referred to in the
title) that the commentaries have raised. I then offer some
remarks on themany exciting suggestions concerning comp-
lementary perspectives and further applications (the pro-
spects). I end by addressing a kind of conceptual puzzle (I
call it “the puzzle of the porous perceiver”) that surfaced
in different ways and that helps focus some fundamental
questions concerning the nature (and plausibility) of the
implied relation between thought, agent, and world.

R2. Perils of prediction

The key perils highlighted by the commentaries concern
(1) the proper “pitch” of the target proposal (is it about
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