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a b s t r a c t

Biological systems are capable of learning that certain stimuli are valuable while ignoring the many that
are not, and thus perform feature selection. In machine learning, one effective feature selection approach
is the least absolute shrinkage and selection operator (LASSO) form of regularization, which is equivalent
to assuming a Laplacian prior distribution on the parameters. We review how such Bayesian priors can be
implemented in gradient descent as a form of weight decay, which is a biologically plausible mechanism
for Bayesian feature selection. In particular, we describe a new prior that offsets or ‘‘raises’’ the Laplacian
prior distribution. We evaluate this alongside the Gaussian and Cauchy priors in gradient descent using a
generic regression task where there are few relevant and many irrelevant features. We find that raising
the Laplacian leads to less prediction error because it is a better model of the underlying distribution.
We also consider two biologically relevant online learning tasks, one synthetic and onemodeled after the
perceptual expertise task of Krigolson et al. (2009). Here, raising the Laplacian prior avoids the fast erosion
of relevant parameters over the period following training because it only allows small weights to decay.
This better matches the limited loss of association seen between days in the human data of the perceptual
expertise task. Raising the Laplacian prior thus results in a biologically plausible form of Bayesian feature
selection that is effective in biologically relevant contexts.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A supervised learning problem where there are few training
examples relative to the number of input features is difficult. Of-
ten, however, there are only a few relevant features such that the
feature space can be condensed somehow. The fewer model pa-
rameters needed, the less chance that the model will overfit or
memorize the training data and generalize poorly to test data. So,
the researcher will often employ feature reduction (Back & Trap-
penberg, 2001; Fodor, 2002; Guyon & Elisseeff, 2003; Saeys, Inza,
& Larrañaga, 2007) or, more specifically, feature selection to find
a useful subset of the features to employ. An embedded form of
feature selection (Saeys et al., 2007) is regularization or weight de-
cay, which is combined with regression to reduce the weight of
uninformative features. The least absolute shrinkage and selection
operator (LASSO) (Tibshirani, 1996) is an effective such formof reg-
ularization.
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It is useful to frame regularization and weight decay into
the Bayesian framework of prior assumptions. The general
feature selection assumption is that each relevant feature comes
from a uniform probability distribution and that only a few fea-
tures are relevant leaving the rest with zero influence, as shown
in Fig. 1. It has been shown that applying certain prior distribu-
tions to regression is functionally equivalent to specific forms of
weight decay or regularization (MacKay, 1992; Williams, 1995),
which provides a mechanism for biologically plausible Bayesian
feature selection. In our simulations of a regression task with few
relevant features, we found that ‘‘raising’’ the Laplacian prior led
to substantially lower prediction errors than the LASSO regulariza-
tion (i.e., the Laplacian prior, Tibshirani, 1996) and ridge regression
(i.e., the Gaussian prior). This is because a raised Laplacian prior
better approximates the distribution from which the underlying
generative parameters were drawn in our task, which followed the
general feature selection assumption.

Investigating weight decay as a biologically plausible mech-
anism for Bayesian feature selection, we found that the raised
Laplacian prior also has desirable properties in an online setting.
Although it is possible that batch learning is employed in biological
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Fig. 1. Prior distributions. The uniform distribution is naturally assumed for
regression. When feature selection is used, however, this implies that the expected
prior is a low probability uniform prior (representing few relevant features) plus
a high probability (delta function) prior at zero (representing irrelevant features).
The Gaussian and Laplacian priors are often used to perform an embedded form of
feature selection. However, these priors with settings that achieve representative
results in later simulations do not match the feature selection ‘prior’ very well. The
raised Laplacian and Cauchy priors model the assumed feature selection prior and
thus provide lower prediction errors, as we will show in a specific regression task.

systems to somedegree as a consequence of hippocampal replay (Ji
&Wilson, 2006; Lansink, Goltstein, Lankelma,McNaughton, & Pen-
nartz, 2009), it is presumed thatmuch biological learning (e.g., dur-
ing active awake periods) occurs online. How do priors compare in
this setting? In a simulation of online learning, we show that rais-
ing the Laplacian prior avoids the natural erosion of the parameters
for relevant features that occurs with the other priors or forms of
regularization evaluated here. Also, in a specific association task
(Krigolson, Pierce, Holroyd, & Tanaka, 2009), we show that raising
the Laplacian prior reduces prediction errors during training and
decays little during between-training rest periods, which matches
the experimental data. These findings lend support to the raised
Laplacian prior as a plausible form of biological feature selection.

There are a number of approaches related to using a raised
Laplacian prior. The raising of the Laplacian prior is somewhat sim-
ilar to the so-called ‘‘spike-and-slab’’ mixture priors (Ishwaran &
Rao, 2005; Lempers, 1971;Mitchell & Beauchamp, 1988). These hi-
erarchical priors define the probability of how often the true prior
is derived from the spike-shaped prior (e.g., a narrow Gaussian)
versus the slab (e.g., uniform prior). These can then be used to
sample the posterior. Our proposed raised Laplacian flattens the
hierarchy of the approach, summing the spike and slab elements
and leading to the regularization or weight decay style terms com-
monly used in embedded feature selection. There are also a variety
of LASSO variants which aim at reducing its prediction error bias
(Fan & Li, 2001; Zhang, 2013; Zou, 2006). We show how several
of these relate to some of the Bayesian feature selection priors we
investigate (and vice versa).

2. Bayesian priors, regularization, and synaptic weight decay

We first discuss our proposed approach for data that are
generated as

y =  T x + N (0, � 2) (1)

where x is an input vector, y is the outcome,  is a vector of
function parameters, and 0 and � 2 are the mean and variance of a
Gaussian random variable. This linear world model with Gaussian
noise is appropriate here for several reasons: (1) it is simple enough
to highlight the features of our approach (2) many real world

problems are actually at least locally linear, and (3) system noise
is often Gaussian due to the central limit theorem. The major issue
we consider here is that we have many features in the world,
but only a few may be relevant to the quantity to be predicted.
Furthermore, this task is even more challenging when given only
a limited number of examples, or real-world experiences, from
which the parameters must be estimated. This is the world in
which biological systems navigate and must therefore possess the
ability to overcome.

It is appropriate to model the relationship between predictive
features (x) and an outcome (y) as a probability density function
(PDF). Commonways of proceeding are tomake an explicit param-
eterized assumption, as used below, or an implicit assumption ex-
pressed in methods such as neural networks. Here we know that
the data conforms to a specific PDF model, whose parameters we
can configure using the available data. The PDF that represents the
Gaussian random variable with linearmean (i.e., Eq. (1)) is given as

p(y, x|�) = 1p
2⇡�

e� (y��T x)2

2�2 (2)

where � are the model parameters to be inferred from data gen-
erated by Eq. (1) (seeking to discover  ). A standard way of doing
this is by finding the most likely parameters given the data (the
posterior probability) according to Bayes rule,

P(�|D) = P(D|�)P(�)

P(D)
(3)

where D = {x, y} is the data (i.e., a collection of inputs and asso-
ciated outcomes). The likelihood term P(D|�) is the PDF in Eq. (2).
Without prior knowledge, the prior distribution on the data, P(D),
becomes irrelevant since it is the same for all � hypotheses and
we are only interested in finding the most likely hypothesis. The
factor P(�) defines a priori how likely an individual hypothesis or
parameter combination is. It is the choice of this prior that is the fo-
cus of the present work. From Eq. (3), the relative likelihood that a
specific data set is generated according to a certain � hypothesis is

L(�) = p(y(1), . . . , y(m), x(1), . . . , x(m)|�)p(�)

= p(�)
mY

i=1

p(y(i), x(i)|�) (4)

wherem is the number of training data points. To find the set of pa-
rameters that maximizes the likelihood of observing the data pro-
vided, that is, the maximum a posteriori (MAP) estimate,

�MAP = argmax
�

(L(�)) (5)

we take the argument’s log,

log L(�) = log p(�) + log
mY

i=1

p(y(i), x(i)|�)

= log p(�) +
mX

i=1

log p(y(i), x(i)|�)

= log p(�) + �m log
⇣p

2⇡�
⌘

� 1
2� 2

mX

i=1

(y(i) � �T x(i))2 (6)

and ascend its gradient,

@ log L(�)

@�j
= @ log p(�)

@�j
+ 1
� 2

mX

i=1

(y(i) � �T x(i))x(i)
j . (7)
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The gradient can be ascended by iteratively updating the model
parameters,

�j =: �j + ↵
@ log L(�)

@�j
(8)

where the learning rate is

↵ = � 2

m(n + 2)
(9)

and n is the number of input features. Notice that ↵’s numerator
contains the variance of the Gaussian random variable, which will
conveniently cancel the 1

� 2 in part of the expression. The prior it-
self, through an internal parameter�, will offset this variance term.
The form of ↵’s denominator was chosen because it is optimal for
the case when the input, x, has a mean of zero and variance of one,
whichwe use in the first of our simulations. The entire formulation
we present here is equivalent to least mean squares (LMS) regres-
sion when the prior is uniform (i.e., p(�) = 1, @ log p(�)

@�j
= 0).

2.1. The Gaussian prior, ridge regression, and weight-proportional
decay

A simple non-uniform prior often used is the (unnormalized)

Gaussian distribution, p(�) = (e� �T �
2 )�, where � dictates the

strength of the prior or, in this case, the Gaussian’s variance. The
gradient ascent update term provided by the prior (whether nor-
malized or not) becomes

@ log p(�)

@�j
= ���j. (10)

Thus, the Gaussian prior reduces a parameter in proportion to its
size. This prior is equivalent to ‘‘ridge regression’’ (Hoerl &Kennard,
1970), a special case of Tikhonov regularization (Tikhonov, 1963),
which employs an L2 norm penalty on the parameters. Krogh and
Hertz (1992) showed that the optimal value of � is the variance
of the Gaussian random variable divided by the average squared
value of the underlying linear model parameters which generate
the data, or � = � 2

1
m

P
i  

2
i
relative to Eq. (1). When the parameters

of the linear function are seen as weights on a linear perceptron or
model neuron, this prior can also be viewed as a synaptic weight
decay, where large weights decay faster than small weights. This
relationship between a Bayesian prior probability, a form of regu-
larization, and synaptic weight decay can be seen in other cases as
well, as described below.

2.2. The Laplacian prior, the LASSO regularization, and constant decay

An often more effective prior commonly used is based on the
exponential function, p(�) = (e� P

j |�j|)�. This prior is referred to
as the double exponential or the Laplacian prior (Williams, 1995),
which gives an update term of

@ log p(�)

@�j
= �� sign(�j). (11)

This is equivalent to the LASSO regularization (Tibshirani, 1996),
which employs an L1 norm penalty on the parameters (see Vidau-
rre, Bielza, & Larrañaga, 2013 for a survey of its use). The gradient
is technically non-differentiable at parameter values of �j = 0, but
in our implementations the sign() function is used to set the gradi-
ent in such cases to zero. A number of solutions involving quadratic
programming have been devised (Schmidt, 2005; Tibshirani, 2011)
that find the exact solution. Yet, because of the convex nature of
the problem, the approximate gradient will lead to a good approx-
imation of the global maximum. In the following simulations, this

direction is taken in an effort to provide a weight decay interpre-
tation of the approach. The primary difference is that, very small
parameter values will constantly jump back-and-forth across zero
instead of shrinking to zero as in exact LASSO solutions. In the re-
sults section, we calculate the maximum error due to the approxi-
mate gradient for our task and show that its effect is negligible.

The LASSO has become a very popular feature selection tech-
nique, having many variants (e.g., Tibshirani, Saunders, Rosset,
Zhu, & Knight, 2005; Yamada, Jitkrittum, Sigal, Xing, & Sugiyama,
2014; Zou, 2006) and new applications being added regularly
(e.g., Colombani et al., 2013; Loo et al., 2014; Toiviainen, Alluri,
Brattico, Wallentin, & Vuust, 2014). The LASSO’s implicit prior nat-
urally tends to encourage large values or zero values more than
ridge regression’s implicit Gaussian prior, placing more of the
probabilitymass at zero and in its tails (Tibshirani, 1996). This leads
to smaller regression parameters for irrelevant features.

2.3. Raising the Laplacian prior leads to a decay zone

When considering the shapes of the Gaussian and Laplacian
priors from Fig. 1, we see that neither of these match well with
the expected distribution of parameter values when only a few of a
great many features are relevant. Raising the Laplacian prior offers
a novel and useful prior distribution

p(�) =

8
>><

>>:

Y

j

✓
z
2s

+ �(1 � z)
2(1 � e��s)

e��|�j|
◆�

,

for � s < �j < s
0, otherwise

(12)

with a gradient of

@ log p(�)

@�j
=

8
><

>:

�� sign(�j)
s�2(1 � z)

s�(1 � z) + (1 � e��s)ze�|�j| ,

for � s < �j < s
0, otherwise

(13)

where z is the probability that a parameter is chosen randomly
with a uniform distribution (bounded between �s and s) and �
is inversely proportional to the width of the Laplacian centered
about zero. As in the above priors, � establishes the effect or
weight of the prior on the posterior probability. In short, this
distribution represents a uniform distribution plus a relatively
narrow Laplacian distribution, suggesting that some proportion of
the parameter values are drawn around 0 and some are drawnwith
a uniform distribution. During updates with this prior, weights
decay rapidly in a zone surrounding zero and almost not at all for
larger values of �. The decay zone is rather sharply bounded with
a width proportional to � and 1 � z.

When z = 1 this approach reverts back to a uniform distribu-
tion and when z = 0, it is equivalent to the LASSO (if � = 1).
This bears resemblance to Elastic Nets (Zou & Hastie, 2005), which
combine the LASSO and ridge regression in a similarweightedway.
The benefit of combining the LASSO’s Laplacian prior with a uni-
form distribution is that it guarantees a significant probability that
parameters will be drawn from the extremes of the range. Adding
a uniform distribution to the Laplacian prior frees it to have a nar-
row width about zero instead of forcing it to be wide enough to
capture extreme parameters. Adding a Gaussian prior, as in Elastic
Nets, does not offer the same freedom.

2.4. The Cauchy prior

Of all of the commonprior distributions onemight use, themost
similar to the raised Laplacian might be the Cauchy prior (albeit
with an uncommon parameterization). It is a special case of the
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Fig. 2. The decay rate of parameters for each prior. For the Gaussian, weights
decay in proportion to their magnitude. In contrast, the Cauchy prior’s weights
decay inversely proportional to their magnitude. For the Laplacian prior, weights
are reduced by a constant amount. Raising the Laplacian has the effect of nearly
shutting off decay for large weights, which fall outside of the decay zone. The width
of the decay zone is affected by the choice of values for z and � .

student-t prior (as is the Gaussian prior), where the number of
degrees of freedom is 1. The Cauchy prior is defined as

p(�j) =

0

BB@
1

⇡�

✓
1 +

⇣
�j
�

⌘2
◆

1

CCA

�

(14)

where� is proportional to thewidth of the high-probability region.
This prior has a compact mathematical expression relative to the
general purpose student-t prior, but its most important feature is
that it has heavy tails (see Fig. 1). Given an appropriate choice of � ,
the Cauchy prior’s heavy tails also begin to approximate the prior
assumption implicit in feature selection. However, such extremely
heavy tails appear to be an uncommon parameterization of this
prior. The batch update term for the Cauchy prior can be defined
exactly and is

@ log p(�)

@�j
= �� 2�j

� 2 + �2
j
. (15)

Although not as widely used as either ridge regression or the
LASSO, the Cauchy prior has been suggested as a good default prior
(Gelman, Jakulin, Pittau, & Su, 2008).

Fig. 2 shows a plot of the decay rate for values of � between
�0.5 and 0.5 for all of the priors examined here, using the same
parameter settings as the representative results in the following
section. The forms of weight decay, which are calculated from
the priors’ gradients @ log p(�)

@�j
are vastly different. The Gaussian

prior leads to a weight proportional weight decay, where large
weights are decreased more with each epoch than small weights.
The Cauchy prior leads to the decay of small weights faster than
large weights. The Laplacian prior leads to constantly decaying
weights, regardless of their size. Raising the Laplacian prior has the
effect of stopping the decay of larger weights, which are outside of
its decay zone.

3. Experiments and results

We expect that raising the Laplacian prior will reduce predic-
tion errors in a feature selection setting where there are few rele-
vant and many irrelevant features, because it better approximates
the prior probability on the feature relevance distribution. To eval-
uate this, we employ a batch learning task with only a few relevant

features and stress test the priors’ ability to reduce prediction er-
rors by separately increasing the number of irrelevant features (to
asmany as ten times the number of data instances) and the amount
of Gaussian noise added to the training data.

As discussed earlier, it seems that awake, biological systems op-
erate on a primarily online learning basis. Thus, we seek to deter-
mine if raising the Laplacian has a beneficial effect on prediction
errors in an online setting. One issue of concern for conventional
priors is that associations or weights are expected to degrade dur-
ing quiescent periods due to the weight decay forms they impose.
We first evaluate all of the priors in an online learning feature
selection task that is similar to the batch learning experiment,
and based on synthetic data. Then we simulate a specific associ-
ation task (Krigolson et al., 2009) in an online learning fashion and
compare it to recorded human data, which exhibits an association
degradation following a quiescent period.

3.1. Batch learning with few data points and many irrelevant inputs

In this section, we evaluate what happens in a simple linear
regression task as we vary the number of irrelevant inputs and
amount of noise when there is little data. For each simulation, the
linear model used to generate the data has two parameters with
real values and the rest are set to zero. Each data point in a simula-
tion (x) is drawn from a Gaussian distribution centered about zero
with a variance of one, which suits the learning rate in Eq. (9). The
data point is passed through the generative linearmodel according
to Eq. (1) to get the outputwhich ourmodelswill attempt tomatch.

Setting only the values of two of the generative linear model
parameters represents the case when there are few relevant
features and many irrelevant features, for which feature selection
is commonly employed. To get a representative sampling of the
combinations of the two relevant features in our evaluation,
we repeat each simulation for all possible positive–negative
parameter combinations (e.g., 0.25, �0.1) and positive–positive
parameter combinations (e.g., 0.25, 0.1) between 1 and �1 from a
grid with a resolution of 1/11, which gives giving 72 combinations.
The results of training and testing on these combinations provide
the mean prediction errors displayed in the figures. The training
set contains 103 data points, which is equal to the number of
model parameters when there are 100 irrelevant parameters (see
below), 2 relevant parameters, and a bias parameter. The test set
contains 1000 data points to provide sufficient accuracy for our
comparisons.

Training must be terminated before the method ‘‘memorizes’’
the specifics of the data rather than the true linear model to re-
duce overfitting. For this, a ‘‘validation’’ data set is presented to the
model after every cycle (epoch) through the data. In this strategy,
training will continue as long as the prediction error on the vali-
dation set decreases with each epoch. In our implementation, we
actually run for 25 epochs between evaluations of the validation
set to allow for somewhat noisy ascents. Once the prediction error
begins to grow again, training stops and the test set is evaluated.

Fig. 3 provides prediction errors for the various priors.When the
results for an approach enter the upper shaded area, they are per-
forming more poorly than the uniform prior and thus provide no
benefit there. No result will enter the lower shaded area because
this boundary represents the Bayesian optimal result. The Bayesian
optimal prediction error is found by selecting the two relevant fea-
tures manually and training with LMS. Here, the uniform prior is
accurate so that LMS can be used to find optimal parameter val-
ues. Representative results for each prior are shownwith appropri-
ate � values (discussed below) for the range of interest (Gaussian:
� = 0.1, Laplacian: � = 0.02, raised Laplacian: � = 4 ⇥ 10�4, and
Cauchy: � = 4 ⇥ 10�4), where the � values reported are per data
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Fig. 3. Regression results with different priors. The above and below shaded re-
gions bound useful results between the uniform prior’s performance and the opti-
mal Bayesian model’s performance, respectively. The performance for each of the
priors are shown for representative values of � (Gaussian: � = 0.1, Laplacian:
� = 0.02, raised Laplacian:� = 4⇥10�4, andCauchy:� = 4⇥10�4). Top Panel: Pre-
diction error as the number of features is varied. Representative � values lower pre-
diction errors for the Laplacian, raised Laplacian, and Cauchy priors, below that of
the Gaussian prior. The raised Laplacian and Cauchy priors give slightly better per-
formance than the Laplacian in general. Bottom Panel: The Gaussian prior only sees a
marginal benefit over the uniformdistribution at high noise levels. The raised Lapla-
cian prior gives substantially better performance throughout the range than both
theGaussian and Laplacian priors, but comparable performance to the Cauchy prior.

point (i.e., the actual � values in our equations are 103 times the re-
ported � values). This provides invariance to the number of train-
ing data points used, which will be especially important when we
shift to online learning simulations in the next section. For all sim-
ulations, the learning rate was fixed as described earlier and fur-
ther testing (not shown) revealed that changing the learning rate
offered either none or only negligible benefit to any of themethods
(i.e., no conclusions were affected). Additionally, we set the other
parameters of the raised Laplacian to � = 100 and z = 0.02 and
of the Cauchy prior to � = 5 ⇥ 10�3. Exactly the same training
and test data sets are used for all priors. Conveniently, this allows
us to comparemodels using amatched-pairs type of statistical test
to determine significance, namely the sign test. This testing was
conducted between the representative curves (not shown in the
figure for clarity’s sake), which revealed that they are significantly
different from one another (p < 0.01) except where curves cross
one another. Model parameter values associated with the relevant
input features will tend to be larger than other parameters. Their
degree of prominence is displayed in their prediction errors — the
lower the prediction error, the more prominent are the relevant
feature parameters. In the Bayesian optimal case, only the relevant
parameters have non-zero values. Thus, the proximity of a result
to the Bayesian performance floor gives a sense of how clearly the
relevant features dominate over the others.

In the top panel of Fig. 3 the noise is fixed at zero and the
number of irrelevant inputs is varied between 0 and 1000 (giving
between 2 and 1002 model inputs) for a training set of only 103
data points. LMS with a uniform prior (i.e., without the manual
feature selection used to compute the optimal result) can solve a
linear system of equations exactly, up until the number of inputs
is greater than the number of data points (i.e., equations). Since

Fig. 4. Difference in prediction error between the Laplacian prior and the optimal
Bayesian model as the value of � is varied. From the graph, we see that the value
of � determines the amount of noise at which the closest approach is made to
the optimal result. It demonstrates that for large amounts of noise, a larger � is
preferred, whereas for smaller amounts of noise, a smaller � is preferred. This
principle holds for the other priors as well, although it is not shown here.

we have 103 data points, 2 relevant features, and a bias parameter,
this threshold is exactly set at 100 irrelevant inputs, where the
prediction error due to LMS’ uniform prior rises sharply in the
figure. Here, the optimal � value for the Gaussian prior is zero
(i.e., a uniform distribution) because there is zero additive noise
(Krogh & Hertz, 1992). Therefore we see that increasing � only
increases prediction errors. In contrast, the Laplacian and raised
Laplacian priors completely eliminate the rapid climb seen for the
uniform and Gaussian priors. Nevertheless, the � values must be
carefully chosen since larger � values increase the base level of
their prediction errors. The raised Laplacian prediction errors tend
to be lower than the Laplacian errors. This is partly due to the fact
that the � values chosen for each approach were also selected to
perform well in the case of varying noise. Finally, the Cauchy prior
curves fall in about the same range as the raised Laplacian curves
in this figure.

In the bottom panel of Fig. 3 the number of irrelevant param-
eters is fixed at 100 (102 model inputs) and the variance of the
additive Gaussian noise in the training data is varied between 0
and 0.25. Note that Gaussian noise is not added to the test sets to
more clearly show the differences in performance. As noted ear-
lier for the Gaussian prior, it has been shown that the optimal �
value depends on the true variance of the error (Krogh & Hertz,
1992). The same is true of the other priors. Fig. 4 shows the differ-
ence between the Bayesian optimal prediction error and the LASSO
prediction error for various levels of additive Gaussian noise. The
figure shows that the choice of � changes the point at which the
performance curve approaches the optimal curve, where larger �
values are preferred for high noise situations and smaller � values
are preferred for low noise. Our choice for the � for each prior in
Fig. 3 places its approach in the bottom panel within the selected
noise range and gives good overall results. In the end, the repre-
sentative Laplacian and raised Laplacian priors give smaller overall
prediction errors in the bottom panel than the Gaussian prior. Fur-
thermore, the raised Laplacian prior curve approaches the optimal
curve more closely than the Laplacian curve (even at the various
values of � shown in Fig. 4). Again, the Cauchy prior is also very
effective. In this task, it achieves comparable results to the raised
Laplacian curve, approaching the optimal curve about as closely as
the raised Laplacian does.

Is the gain of raising the Laplacian prior over the LASSO merely
an artifact of the approximating the LASSO regularization pro-
cess with our weight decay like implementation? In short, no. In
the worst case, parameters that would be zero in exact LASSO
implementations would be at most ±↵�. Given 100 irrelevant
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parameters (used in the bottom panel of Fig. 3), with a roughly
equal probability of being positive or negative, the variance of such
a binomial distribution is 100 ⇤ 0.5(1 � 0.5) = 25. The predic-
tion error due to LASSO approximation, within two standard de-
viations (about 95% of the time) would be at most 2

p
25↵� =

2
p
25 0.02

102+2 = 1.9 ⇥ 10�3. At the extreme of having 1000 irrel-
evant features (used in the top panel of Fig. 3), the error due to
approximation would be 2

p
250 0.02

1002+2 = 6.3 ⇥ 10�4. These are
far less than the prediction error differences between the LASSO
and the raised Laplacian. In fact, the raised Laplacian is also subject
to prediction errors caused by the approximation process. Instead,
the primary reason for the difference in performance is the LASSO’s
‘‘shrinkage’’ of relevant parameter values or its bias. According to
Eq. (8), when the total prediction error is reduced to�, @ log L(�)

@�j
will

be zero and no further learningwill occur. That is, the penalty term
keeps relevant feature parameters from reaching their full predic-
tive values. In contrast, the raised Laplaciandoes not decay relevant
parameters when their values are outside of the decay zone. This is
usually the case, allowing relevant parameters to reach full value.
Wewill further consider this issue and its relevance to other LASSO
variants in the discussion section.

3.2. Online learning and the eroding effect of certain priors during
quiescent periods

The primary focus of this paper is to investigate how biological
systems may perform Bayesian feature selection. In the preceding
results, the priors were evaluated using batch learning, where a
full set of data points is given and processed as a group. However,
it seems likely that biological systems operate in an online learning
mode to some degree, learning from their stream of experience in
real-time instead of storing it all for subsequent processing. Fur-
thermore, a biological agent may pass through a variety of envi-
ronments and spend uneven blocks of time among them, whereas
standard machine learning tasks for which regularization is nor-
mally employed tend to suppose a more uniform sampling. Thus,
we turn our attention toward online learning tasks and how the
forms of weight decay imposed by the priors behave therein. Let
us consider scenarioswhere predictive cues and outcomes are only
active over a certain duration but recur after a significant period,
whether regularly (e.g., weekly or annually, etc.) or irregularly. Al-
though the goal remains to learn to predict outcomes with as little
experience/data as possible, it is important that during the quies-
cent periods, the predictive nature of the relevant cues is not lost
due to the weight decay.

To think in terms of a concrete and biologically relevant
example, wild strawberries ripen in many areas in the late spring,
changing size and color indicatingwhen they are ready for harvest.
Eventually, the harvest period passes, and the fruits are either
picked or rot so that these cues disappear until next year. With
this scenario, we can test the priors in an online way by preparing
a data set (2 relevant features, 100 irrelevant features, 0.1 noise
variance) where we only allow each model to see the data once
(i.e., one cycle only). The two relevant features represent berry
size (larger for larger berries) and berry redness (larger for brighter
redness) relative to average levels and the outcome is the quality or
value of the fruit to the animal. The noisy features represent other
features of the real-world unrelated to strawberry appearance. All
parameters are updated after the presentation of each data point,
which includes the effects of the weight decay.

For the first 103 data points, the inputs are chosen as per the
previous simulations, representing the harvest period. After that,
we clamp the relevant features’ inputs to zero but choose other
inputs in the same way. This growing number of additional data
points represents a period of time between harvest periods where

neither the relevant ripe strawberry features appear (i.e., zero-
valued inputs) nor is a strawberry consumed (i.e., zero output plus
noise).

For each time step throughout the harvest and post-harvest pe-
riods, we test the ability of the models to predict the values of a
range of berries correctly (1000 test points, as per earlier simula-
tions). Fig. 5 shows these results, comparing the effectiveness of the
four forms of weight decay in this task. All priors lead to a reduc-
tion in prediction error during the first 100 or so time steps or data
points. However, after this period, the Gaussian, and Laplacian pre-
diction errors increase because the relevant parameter values are
eroded by weight decay with the presentation of each additional
data point. These eventually rise above the uniform prior results,
even with different values of � (not shown) than used in the rep-
resentative batch learning results shown earlier. The slightly dif-
ferently parameterized raised Laplacian prior shown in the figure
(� = 2 ⇥ 10�4,� = 300, z = 0.02), however, proves to be quite
stable, maintaining a relatively low prediction error throughout
(slightly lower than with the parameterization of the representa-
tive results shown earlier). Most of the relevant parameter weights
were increased sufficiently in the early period such that they were
prevented from decay during the period when relevant features
were absent (clamped at zero) and therefore not reinforced. With
enough data, the uniform distribution’s prediction error drops, but
not below that of the raised Laplacian (sign test, p < 0.01) be-
cause of the additive Gaussian noise. The thick Cauchy prior learn-
ing curve (� = 5 ⇥ 10�3, � = 4 ⇥ 10�4) decays much like the
Gaussian and Laplacian curves in the post-harvest period. It would
seem that one way to reduce the decay in the Cauchy prior would
be to make the weight decay profile sharper, which can be done
by reducing � . The two thin dotted lines of Fig. 5 show the perfor-
mance for two suchCauchypriors (� = 1⇥10�3, � = 8⇥10�5 and
� = 2⇥10�4, � = 1.6⇥10�5) with adjusted values of � to main-
tain the peak weight decay (0.08, as shown in the weight decay
curve of Fig. 2). Their performance in this online task suggests that
the slope of the increasing prediction error during the post-harvest
perioddoes indeeddecline as theweight decayprofile gets sharper,
but the error is substantially higher in the harvest period (when ac-
curate predictions are neededmost). Also, the effective decay range
for the prior is reduced and cannot overcome the effects of noise
as well as before. Thus, the raised Laplacian prior appears to have
some advantage over the other priors in this online task.

3.3. Decay in a multiple-session association task

To examine the online effects of decay further and to relate
weight decay to experimental data, we simulate the perceptual
expertise task of Krigolson et al. (2009), where the goal is to cat-
egorize unique visual shapes (blobs) into either class A or B based
on their appearance.Making the association between blob features
and the correct category is a challenging task, such that the subject
pool in the original experiment became divided between whether
one could or could not learn the task. In a replication of the exper-
iment (unpublished data) subjects were trained for a period each
day (1000 categorization trials) for five days, allowing time for de-
cay to occur between days. During training, electroencephalogra-
phy was used to acquire the reward positivity (Holroyd & Coles,
2002; Holroyd, Pakzad-Vaezi, & Krigolson, 2008; Krigolson, Has-
sall, & Handy, 2014). An examination of the first block (first 100
trials) of day one with regard to the event related potential (ERP)
feedback averaged waveforms for correct and incorrect trials re-
vealed a feedback error-related negativity (fERN: Miltner, Braun,
& Coles, 1997). In subsequent blocks (and days) however, there
were not enough incorrect trials to warrant an examination of the
fERN without fear of frequency contamination (Holroyd & Krigol-
son, 2007) and, as a result, subsequent ERP analyses focused on the
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Fig. 5. Online learning prediction error as the number of data points is varied (100
irrelevant inputs and 0.1 noise variance). After the first 100 data points, the relevant
feature inputs are clamped at zero. The weight decay from the Gaussian, Laplacian,
and Cauchy priors (with the same parameterization as the earlier representative
results) leads to an erasure of the relevant parameter values with increasing
numbers of data points. The raised Laplacian (� = 2 ⇥ 10�4,� = 300, z = 0.02),
however, gives rise to a stable form of weight decay that erodes very little with
time. Prediction errors for the uniform prior do not descend as quickly, but they
are eventually lowered with enough data. The two thin dotted curves result from
Cauchy priors that have a sharperweight decay profile (� = 1⇥10�3, � = 8⇥10�5

and � = 2⇥10�4, � = 1.6⇥10�5), but have the samemaximumweight decay. The
sharper profile is an attempt to reduce the rate of erasure of the relevant parameters
with time. It does this but also increases prediction errors substantially during the
harvest period.

reward positivity — the mean magnitude of the positive feedback
average waveform for each subject in the time range of the fERN
recorded abovemedial frontal cortex. In the top-left panel of Fig. 6,
we see that the reward positivity descends over training, especially
in the first two days, and is mostly flat on subsequent days. A com-
parison of the amplitude of the reward positivity between the last
block of day one and the first block of day two revealed a small in-
crease in amplitude — a restart cost (+1.4 uV; Cohen’s d = 0.28,
small effect: Cohen, 1988). A comparison of the last block of day
one and the second block of day two revealed that the restart cost
difference was diminished (+0.8 uV; Cohen’s d = 0.07, no effect:
Cohen, 1988). Thus, within the first block or two of training on the
second day, the restart cost that had accrued during the interses-
sion interval was overcome.

One possible explanation for the reward positivity increase be-
tween days is synaptic weight decay during the intersession pe-
riod. Accordingly, Fig. 6 also contains learning curves showing the
effect of each prior in a simulation of the experiment (see below
for details). In our previous simulations, we saw that decay is good
for generalization. Here, we have a real-world task (discrimina-
tion between two similar object types) where certain forms of de-
cay, however, can have serious effects. Ultimately, it is desirable
to keep the generalization benefit of decay during training with-
out substantial intersession interval decay. The resulting simula-
tion curves (one for each day of training and prior) show that the
raised Laplacian (z = 0.02,� = 100, � = 4 ⇥ 10�4) and Cauchy
(� = 5 ⇥ 10�3, � = 4 ⇥ 10�4) priors provide a small interses-
sion interval decay,matching the experimental datawell, and have
slightly steeper learning curves (i.e., better generalization) than the
uniform prior. In contrast, the Gaussian (� = 0.1) and Laplacian
priors (� = 0.02) appear to induce a learning reset during the in-
tersession interval, despite a slight improvement in generalization
over the uniform prior. The uniform prior naturally avoids decay
during the intersession interval, but because there is some increase
in reward positivity between days, it is not as good a model of the
experimental data. In summary, for a decay explanation, the raised
Laplacian and Cauchy priors fair best.

In the simulation fashioned after the task, there are 1000
training trials per simulated day separated into 100 trials per block

Fig. 6. Learning curves in the 2-blob association task (see text for details) using the
same prior parameterizations as in the representative results of Fig. 3. The top-left
panel shows the reward positivity data collected from subjects and the remaining
panels provide simulation results of the task for various priors. The remaining
panels show the mean and standard deviation of the error in a simulation of the
task for each of the priors. The raised Laplacian and Cauchy appear to more closely
resemble the real data, not decaying much between training sessions, and have
slightly less error overall than does the uniform prior.

and 5000 rest trials between the daily sessions. In every trial,
regardless of type, the decay is active. Eachblob class is represented
uniquely by 10 of the 100 total inputs, where the relevance of
each input is randomly chosen (uniformly between 0 and 1). In
each trial, a blob’s relative feature relevance remains constant,
although their absolute value is scaled by a random value between
0.8 and 1.2 to allow for more or less generally salient blobs. The 80
irrelevant features, which are active 50% of the timewith a random
value (uniformly chosen between 0 and 1), represent that with the
presentation of a given blob there will be some active features that
are not unique to its class, which each reflect either an overlapwith
the other blob class or a common feature of the environment. The
learning rate (set to 1 ⇥ 10�3) was chosen to provide a learning
curve on day one which descends at least half of the way toward
the asymptote. The curves in Fig. 6 show themean prediction error
(not task accuracy) of 20 randomly initialized learners on each
training trial, in an attempt to relate to the reward positivity decay
curves above.

There are two primary variables that affect these decay curves:
the number of rest trials representing the intersession interval
and the number of unique features representing a specific blob
class. Fig. 7 shows the mean prediction error after the first training
block on the fifth day of training as these parameters are varied.
As the number of rest trials increases, the Gaussian and Laplacian
results rise (i.e., reset between days) sooner than the Cauchy, as
shown in the top panel. The raised Laplacian always keeps a low
prediction error. However, in the bottom panel, the Cauchy and
raised Laplacian priors’ results both begin to rise as the number of
features representing a stimulus increases to the point that none
of the associated weights escapes the priors’ decay zones, and thus
these priors erode the learned parameter values thoroughly during
the intersession interval. For the same reason, similar curves for the
raised Laplacian and Cauchy priors in the bottom panel would be
generated if the salience of the prediction target (i.e., the value of
the reward for predicting correctly) were reduced from 1 (used in
our simulations) toward 0.
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Fig. 7. The mean and standard deviation of the error after the first block on
day 5 of training when varying the number of trials representing the intersession
interval (top panel) and the number of features uniquely representing a blob class
(bottompanel). The Cauchy and raised Laplacian priors tend to decay relatively little
during the intersession interval unless the association is spread out among many
representative features.

4. Discussion

It is a counter-intuitive notion that the decay of an associa-
tion should assist learning. The principle of using an appropriate
Bayesian prior and the results of the three foregoing simulations,
however, unanimously affirm this notion. This is a reality because
the decay reduces the influence of irrelevant features, allowing
the association to be focused on the relevant features (i.e., decay
leads to feature selection). Decay can also have a negative effect,
however, as seen in the online learning simulations. Here, we
have investigated how the form of decay affects prediction errors
(i.e., generalization) and the strength of relevant feature associa-
tions over time, presumably both of which are relevant issues in
biological processing.

It would seem that the ‘‘best’’ decay approach is one that re-
duces prediction error most while maintaining low decay of rele-
vant parameters over extended periods of time. In our simulations,
the weight-proportional (Gaussian) decay is least effective in low-
ering prediction error and badly decays relevant feature influence
during non-training periods in online learning. Similarly, the con-
stant (Laplacian or LASSO) decay is effective for generalization in
batch learning but similarly leads to substantial decay in the on-
line setting. The decay of primarily small valued weights (raised
Laplacian and Cauchy) is effective in terms of achieving the lowest
prediction error whether in the batch or online settings, and does
not suffer nearly asmuch from the effects of decay following train-
ing periods. The raised Laplacian prior is somewhat more practical
than the Cauchy prior in that its associations have a limited decay
with time, since only weights within the decay zone will be lost. In
contrast, the Cauchy prior leads to a small but significant decay for
weights outside of the raised Laplacian’s decay zone and thus will
accrue substantial loss of relevant feature strength over interme-
diate and extended periods of time, as evidenced in the top panel
of Fig. 7.

It has long been known that the LASSO produces a bias on pre-
diction errors, and a number of LASSO variants have been designed

Fig. 8. Thresholding functions of the three priors and several LASSO variants that
reduce or eliminate the LASSO’s prediction error bias for large parameter values. The
adaptive LASSO and Cauchy prior are very similar in their shape and the truncated
LASSO and SCAD are both very similar to the raised Laplacian.

to resolve it. For several of these and the priors discussed here,
Fig. 8 shows their associated ‘‘thresholding functions’’, which il-
lustrate the parameter bias as a y-axis deflection from the line of
y = x. The adaptive LASSO (Zou, 2006) imposes a penalty that is
very similar to the Cauchy prior presented here, having very lit-
tle bias (or decay) for large parameter values, while having a large
bias for small parameters. The smoothly clipped absolute devia-
tion (SCAD) penalty (Fan & Li, 2001), also diagrammed in Fig. 8 re-
sembles the raised Laplacian, bearing a configurable decay zone,
but accomplishes this with a piece-wise continuous function. The
capped or truncated LASSO (Zhang, 2013), which we call upon be-
low as an approximation to the raised Laplacian, has the same bias
as the LASSO for parameter values below some threshold and zero
otherwise. All of these approaches suggest similar ways of mostly
eliminating the bias on large parameter values. As reasonable ap-
proximations of the raised Laplacian and Cauchy priors, it would
appear that such attempts at reducing the LASSO bias could be
justified as accomplishing Bayesian feature selection following the
general feature selection assumption.

The raised Laplacian is non-convex, like several other LASSO
variants, since there will be many local minima for the wide range
of potential initial parameter values. To mitigate this, it is useful
to initialize the parameter values to small or zero values where,
within the decay zone and as in the LASSO generally, there is a
single minimum. This is a reasonable constraint to expect of bio-
logical systems which must grow from scratch the hardware that
implements their associative weights. It was also effective in our
simulations, since the minima found gave lower prediction errors
on average than the LASSO, which is convex. There are a number
of algorithms that have been developed to solve the LASSO and its
variants, which are devoted to improving computational efficiency
(e.g., Efron, Hastie, Johnstone, & Tibshirani, 2004; Friedman, Hastie,
Höfling, & Tibshirani, 2007; Friedman, Hastie, & Tibshirani, 2008).
Although it is conceivable that the raised Laplacian and other pri-
ors may be similarly benefited for practical machine learning pur-
poses, we have rather focused on the arguably less efficient weight
decay approach because it is plausible and insightful in the pri-
marily online, biological learning setting. This approach was suf-
ficiently efficient to handle relatively large numbers of irrelevant
features (1000). Additional work would be needed to determine
the raised Laplacian’s limits and to develop more computationally
efficient implementations.

One side-effect of raising the Laplacian prior is that there are
three additional parameters to be set. The parameter z represents
the proportion of the probability that says features are drawn from
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a uniform distribution, which has a direct effect on thewidth of the
decay zone (smaller z values give wider decay zones). The param-
eter � defines how wide the Laplacian prior should be, which has
the direct effect of changing the slope of the decay zone bound-
ary (smaller � values give gentler slopes and wider Laplacians),
which affects the decay zone’s width as well. Finally, the value of
s or the width of the uniform prior must be defined to capture the
maximum and minimum parameter values. The decay due to the
raised Laplacian is a more expensive computation than the LASSO
decay (compare Eqs. (11) and (13)). From Fig. 2, it would appear
that the decaying effects of the raised Laplacian prior might be ap-
proximated by subtracting a constant value, as in the LASSO, for
weights whose magnitudes fall below some threshold (i.e., within
the decay zone), a less expensive computation. This is function-
ally the same as the truncated LASSO noted earlier. SCAD might
also serve as an approximation, except that the width of its decay
zone is intrinsically tied to its � value and so will align with the
raised Laplacian only under specific constraints. Fig. 9 compares
the earlier performance of our raised Laplacian prior with a trun-
cated LASSO approximation,where parameters less than±0.08 are
reduced according to the LASSO decay in Eq. (11), with � = 0.04.
These results demonstrate that such an approximation performs
comparably in our task.

When used in novel tasks, it will be necessary to find appro-
priate parameters for the priors. For the raised Laplacian, it makes
sense to first find a truncation threshold and � to achieve good re-
sults with the approximate model and then, if the proper raised
Laplacian is needed, to adjust �,�, z, and s to match the approx-
imation. A good starting value for the truncation threshold is the
average non-zero parameter value after training with the LASSO
(estimating its � according to conventional means). The trunca-
tion threshold and �may be further refined by using a grid search
within a small range around these values, evaluating each param-
eter pair using cross-validation in the novel task. Once a good ap-
proximation model has been found, plotting the derivative of the
raised Laplacian (Eq. (13), as shown in Fig. 2) for various combina-
tions of� and z can be used to find a closematch to the approxima-
tion, fromwhich a second cross-validation-based grid search could
be used to further optimize as necessary. The s parameter is sim-
ply set to the width of the range of possible parameter values. For
the Cauchy prior, the � and � parameters need tuning. The � pa-
rameter dictates the sharpness of the Cauchy’s gradient, as shown
in Fig. 2, which indicates how aggressively it reduces larger val-
ues. For a starting value, we recommend choosing one that gives a
gradient that is just short of enveloping the expected feature pa-
rameter values (again, the average non-zero parameter value after
training with the LASSO). In our experiments, the Cauchy’s effec-
tive � value was either the same or very similar to � for the raised
Laplacian, which gave a peak decay in the derivative in Fig. 2 that
was twice the peak value of the raised Laplacian, and four times the
constant decay value of the Laplacian itself. Such a relative value
would be a good start. The starting � and � parameters can be fur-
ther optimized using a grid search and cross-validation as neces-
sary. The parameter-finding processes for both the raised Laplacian
and Cauchy priors may be used in both batch and online learning
situations.

Aside from weight decay, there are two primary explanations
of the intersession interval rebound of reward positivity in the ex-
perimental data to consider: warm-up decrement and retroactive
inhibition. In warm-up decrement or loss of set (Ammons, 1947a,
1947b; Irion, 1948) the subject becomes efficient at performing
the task over the course of training, adjusting his or her posture
and attention to accomplish the task correctly and swiftly. During
the intersession period, this skill set may be somewhat lost. When
the subject is retrained after an intersession period, the task ef-
ficiency or skill takes some time to reestablish (i.e., the warm-up

Fig. 9. Performance comparison between the raised Laplacian and a simple
approximation referred to as the truncated LASSO. The approximation reduces
parameters between�0.08 and0.08 according to the LASSOdecay in Eq. (11),where
� = 0.04. The approximation achieves very similar results to the raised Laplacian,
maintaining significantly lower prediction errors than the LASSO.

period). With a loss of set, one expects an initially steeper learning
curve in a subsequent training session (Irion, 1948), because the
set is recaptured rather quickly. Retroactive inhibition or interfer-
ence and related theories of ‘‘forgetting’’ (McGeoch, 1942; Muller
& Pilzecker, 1900; Robinson, 1927) would explain the data differ-
ently. It is possible for activities in the intersession period to de-
crease apparent retention, depending on the degree of similarity
between these and the learning task. It appears that maximally
similar tasks will cause the most interference. It has been hypoth-
esized that intersession activities may either hinder memory con-
solidation of the task or reflect competition during recall (i.e., an
impairment in retrieval). Loss of set and retroactive inhibition at-
tribute different causes to the loss in retention than a mere decay.
More finely resolved blocks (i.e., fewer trials per block) might have
provided a better distinction between a decay in association and
a loss of set by determining whether early learning on the second
day had a sharper slope than uninterrupted learning at a compa-
rable level of proficiency (say, at around block 8 of the previous
day). At the 100 trials per block resolution, the fact that the reward
positivity of day 2, block 2 is not below the day 1, block 10 value fa-
vors the decay explanation, since the first block (100 trials) of day
2 would seem sufficient to restore a loss of set in this task and al-
low the second block’s reward positivity to descend below that of
day 1, block 10. It is unclear how well retroactive inhibition might
account for the decrement in the reward positivity on day 2 in this
task. While, the blobs are very different from objects that subjects
are likely to encounter during the intersession interval, there may
be some overlap since object classification is part of daily routine. A
version of the experiment that attempts to control for retroactive
inhibition, by adding a strongly similar task during the interses-
sion interval for one group, may be more effective at teasing this
apart. In summary, a decay explanation of the experimental data
would see steady (rather than steep) decreases in reward positiv-
ity on day two, and would see an intersession interval decay even
when intersession periods involve minimally interfering activities
(e.g., sleep).

5. Conclusion

In pursuit of a biologically plausible form of Bayesian feature
selection, we have related various Bayesian priors in terms of their
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regularization or weight decay forms and have evaluated their in-
fluence in both batch and online learning tasks. Here, employing a
raised Laplacian prior lowers prediction errors below those of the
Gaussian and Laplacian priors in a batch learning regression task,
since the raised Laplacian is a better model of the underlying pa-
rameter distribution. The Cauchy prior, with an unusual parame-
terization, can also achieve similar performance in this regression
task. However, it alongwith theGaussian and Laplacian priors, lead
to the significant erosion of relevant parameters in online learn-
ing, a primary mode of learning in which biological systems are
expected to engage. The raised Laplacian’s ‘‘decay zone’’ instead
limits the erosion of its relevant parameters, achieving persistent
associations, unless the association is highly distributed among
many features (or there is low target salience). We conclude that
the exclusive decay of small weights, as imposed by the raised
Laplacian prior, provides a biologically plausible implementation
of Bayesian feature selection that is not only effective in batch
learning, but sustains associations through quiescent periods in
online learning and is therefore well suited to biological systems.
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