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Abstract—Hyperactivity is a key symptom in those di-
agnosed with Attention Deficit Hyperactivity Disorder. In
the present work, we model hyperactivity in terms of a two-
armed bandit task from Reinforcement Learning, where
initial state-values are set abnormally high. Extinction of
these state-values when neither action is very rewarding
induces repetitive switching between actions over a series
of trials with a frequency that is proportional to the initial
state-value. Here we propose that although setting initial
values may be a useful exploration strategy, switching can
become overly frequent or “hyperactive” when they are set
too high.
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1 Introduction
Attention Deficit Hyperactivity Disorder, or ADHD, is

a developmental disorder which, as the name suggests, in-
volves the presence of an attention deficit and hyperactivity.
In this paper we decided to focus on the latter symptom. A
classic example is a young student in class. Several actions
can be exercised, such as“listening to the teacher”, “chat-
ting with classmates”, “playing with a pen”, etc. While
every child (and adult) struggles to maintain focus and
sometimes switches between possible actions, hyperactiv-
ity could be characterized by more frequent switching. We
can define this scenario in terms of a Markov Decision Pro-
cess (MDP), which describes how an agent (i.e. someone
or something) acts in an environment. Our agent begins
in the “seated in class” state and, from here, explores its
environment by moving to neighbouring states, which re-
quires taking corresponding actions (i.e. “listening”, “chat-
ting”, “playing”). After taking an action, the MDP agent
learns something about the rewarding nature of that move
and is returned to its initial state, which allows it to choose
again, this time more informed about the value of potential
actions. Remaining focused is analogous to the repeated
selection of the same action, while hyperactivity could be
characterized by a high rate of switching between actions.

2 The Optimistic Initial Value Exploration Strategy
Common to many Reinforcement Learning (RL) algo-

rithms is the question of exploration strategy. Exploring is
simply trying a variety of actions from each state to help
the agent discover rewarding paths. Some RL approaches
involve a probabilistic policy, meaning that there is ran-
domness in the choice of actions [1]. In addition, RL ap-
proaches often use probabilistic outcomes, where the actual
outcome of taking an action is not always the expected one.
For example, if the selected action, or policy, for a certain
state is to “move left”, the agent will sometimes end up to

the right of its present position. Although these approaches
can be effective and reasonable for exploration (we do not
always choose rationally or arrive where desired), we con-
sider an alternative. In an MDP problem formulation, the
initial value of taking a specific action, or the action-value,
is usually set to zero or some small negative amount. In-
stead, if the action-values are given equal optimistic (pos-
itive) initial values [1], an interesting exploration strategy
naturally emerges. Consider an agent in an initial state,
having to choose its next action. It will do this by selecting
what it believes is the most rewarding action. When the
outcome of the action is less than expected, that action will
lose value, lowering itself below other possible actions. As
a result, the agent will choose a different action from that
state next time. If all actions lead to less than expected
outcomes, the agent will systematically explore all actions
from that state.

3 Hypothesis and Model
As discussed earlier, if hyperactivity may be character-

ized by frequently switching between behaviours or, in RL
terms, changes in the policy, hyperactivity may simply be
the result of having an above average initial value for po-
tential actions from a given state. Having higher initial
state values (say, twice as much for hyperactive agents than
healthy agents), will lead to steeper decreases in action-
value when the action taken is unrewarding. The hyperac-
tive agent would thus switch more frequently. Note that it
was this prospective mechanism rather than a clinical find-
ing which motivated this work.

In order to simulate this situation, we built a simple MDP
with only three states: the initial state and two terminal
states, which is commonly referred to as the “two-armed
bandit problem” [1]. From the initial state, the agent must
pick one of two actions, which move it to one of the two ter-
minal states, which we have chosen to give zero (neutral)
reward value. Exploring the environment is thus reduced
to taking both actions and discovering the most valuable
state amongst these two terminal states. In our setting, the
action-values are initialized to some positive value. Then,
for each trial, the agent will pick the most valuable ac-
tion and, because it receives zero reward for its efforts, de-
creases its value for that action. It will pick the same action
until its decreasing action-value dips below the other ac-
tion’s value, where it will switch to the other action.

The update of action-value is based on an algorithm
called Q-Learning [1]. When using this approach for the
two-armed bandit case, the action-value update rule can be
simplified to:

Q(s, a) ← Q(s, a) + α[R(s�)−Q(s, a)], (1)

where s is the initial state, a is the action chosen, Q(s, a) is



Figure 1: Switching frequency over time with a threshold.
Under this amended hypothesis, the higher the initial value,
the more frequent the switching.

the action-value, α is the learning rate (we used α = 0.1),
and R(s�) is the reward received at the next state, s�.

The policy (i.e. the action to choose) changes when the
value of taking the most recent action sinks below the other
action’s value. Note that we focus on the use of action-
values, but a form using state-values would work similarly.

4 Results
Initial results (not shown) were unexpected, although

reasonable. The rate of switching was the same for both
the agent with high initial action-values (Q(s, a) = 10)
and the agent with low initial action-values (Q(s, a) = 5).
Indeed, both agents switched at exactly the same time.

Although unexpected, these results make sense. No mat-
ter the initial value used, one action loses value as fast as
the other and eventually switching occurs with almost ev-
ery trial. One possibility, however, is that switching be-
tween actions incurs a cost. Although two actions may have
similar action-values, the action which had been taken last
time may be selected because it is “easier” than switch-
ing to the other. This can be expressed by introducing
a threshold to the switching operation. The action-value
of the recently selected action must then drop by a cer-
tain amount (the cost) below the next highest action-value
before a switch will be made. That is, a switch will be
made when taking the alternate action is more valuable
than the latest action, even after accounting for the ef-
fort required. Consider the terminal states A and B, and
their action-values Q(s, aA) < Q(s, aB), for example.
With the initial hypothesis, the switch occurred as soon as
Q(s, aA) > Q(s, aB). Now, with the threshold, θ = 0.5, it
occurs when

Q(s, aA) > Q(s, aB) + θ (2)

Since the initially higher action-values of the hyperactive
agent decrease faster according to Q-Learning, the thresh-
old is reached more readily and thus switching occurs more
frequently, as shown in Figure 1.

5 Discussion, Conclusions, and Future Work
We have suggested a mechanism to explain hyperactiv-

ity. Neural correlates may involve the basal ganglia (BG),

where reinforcement learning is believed to take place [2].
One prediction from this model is that hyperactivity should
decrease if the value-extinguishing learning rate (α) is
made to decrease. This could be done by increasing ex-
tracellular dopamine. In the striatum, a region of the BG,
direct pathway neurons promote actions and have been im-
plicated in representing action-values [2]. From Shen et.
al. [3], it appears that these neurons lose synaptic strength
when active with low dopamine, but gain strength with high
dopamine. Thus, perhaps a higher dopamine level hinders
these neurons from extinguishing their activity and thus
slows action-value reduction and switching. One study [4]
found that extracellular dopamine is increased with thera-
peutic dosages of oral methylphenidate, a key drug used to
reduce the symptoms of ADHD.

Another interesting possibility along this theme is that
our simulation (with cost thresholds incorporated) will give
similar results with equally optimistic agents when the hy-
peractive agent has a larger α. Below normal dopamine
levels in hyperactive people should facilitate this through
greater reduction of synaptic strengths of direct pathway
neurons, as interpreted from Shen et. al [3].

Another prediction of this mechanism is that hyperactiv-
ity will decline with the number of trials or time spent in
a certain state. This is counterintuitive since, for example,
it seems that students naturally get more hyperactive with
time and not less. It may be that the initial action of “lis-
tening to the teacher” is rewarding enough to sustain that
activity and only after a period of time does its value de-
crease to the level of other actions. These other actions then
begin to take part and hyperactivity increases. However, if
given enough time, perhaps all actions will get boring, and
switching will slow.
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