2 Sensing, acting and control

This is a busy chapter where we review some fundamental techniques for robotics.
We will learn how to acquire images from a webcam and to filter the image in order
to look for specific items. We will then explain how to use a Lego NXT with Matlab,
that is, how to send motor commands and how to receive sensor information that we
can then use in our math lab program. We will practice this programming with some
first robotics tasks. Furthermore, we will discuss some basic kinematics models for
some example robots and finally review some basic control theory as it is essential
in robotics applications and it also provides us with a framework to explore machine
learning methods.

2.1 Basic computer Vision

Cameras and other sensors that can sense physical objects in the environment, such
as infrared cameras to sense heat distributions or scanning sonars for underwater
applications, are an important source of sensory information. The main challenge with
such data is how to interpret them as we usually want to extract more meaningful
information from them such as recognizing objects or distances to obstacles. Vision is
a major sensory source for humans and our brain is specialized in interpreting signals
from our eyes. Machine learning has contributed considerably to recent progress in
computer vision including object tracking and object recognition. We will not enter
into this discuss here but rather show how to use a webcam with Matlab and how to
do basic operations on such acquired pictures of videos that typically form the first
stage of more sophisticated vision systems. These techniques will also become handy
in later experiment.

2.1.1 Acquiring data from webcams with Matlab

In order to process video streams, we will use Mathwork’s Image Acquisition Toolbox
in Matlab®. First we make sure the toolbox is installed in your Matlab version and
configured and describe commands to retrieve information of your specific system. To
do so, use the command

imaghwinfo

ans =

3There are also some alternatives, For example see http://www.mathworks.com/matlabcentral/fileexchange/35554-
simple-video-camera-frame-grabber-toolkit

28 | Sensing, acting and control

InstalledAdaptors: {’dcam’ ’gige’ ’macvideo’}
MATLABVersion: ’8.1 (R2013a)’
ToolboxName: ’Image Acquisition Toolbox’
ToolboxVersion: ’4.5 (R2013a)’

More specific information can be obtained with

>> HD=imaghwinfo(’macvideo’)
HD =

AdaptorDl1Name: [1x85 char]
AdaptorDllVersion: 4.5 (R2013a)’
AdaptorName: ’macvideo’
DeviceIDs: {[1]}
DeviceInfo: [1x1 struct]

More specific information of the supported video format and size can be obtained by
inspecting the previously ceated HD object,

HD.DeviceInfo(1)

DefaultFormat: ’YCbCr422_1280x720’
DeviceFileSupported: 0O
DeviceName: ’FaceTime HD Camera (Built-in)’
DevicelID: 1
VideoInputConstructor: ’videoinput(’macvideo’, 1)’
VideoDeviceConstructor: ’imaq.VideoDevice(’macvideo’, 1)’
SupportedFormats: {’YCbCr422_1280x720°’}

Now we are ready to show how to create a video stream and to display it in a
Matlab figure window. On a windows system, likely the most common way to achieve
this is

1 stream = videoinput ('winvideo', 1);
2 preview(stream);

Under normal circumstances, a new window opens with a preview of the video
stream. Mac and Unix user should replace the string winvideo with macvideo or
unixvideo respectively. The number ofter this string represents the ID of the camera.
The build-in camera has usually ID=1, but you might need to specify another number
when you use an external camera. The string you should use is also specified in the
VideoInputConstructor line from the DeviceInfo command.

In order to process a frame in this video image we need to retrieve a single frame
from the video stream that we created previously. First, we specify the colorspace we
want to obtain, such as RGB, then get a snapshot from the video steam, and finally
display it with the imgshow command,

Basic computer Vision | 29

1 set (stream, 'ReturnedColorSpace', "rgb'");
2 frame = getsnapshot (stream);
3 imshow (frame) ;

The picture is stored as object frame in the Matlab Workspace. Its size depends on the
resolution of the webcam and the chosen colorspace. With a 720x1280 resolution and
in RGB for example, the obtained frame will be a 720x1280x3 uint8 object. As an
example to process this image directly with Matlab, let us extract the red component
and display this alone with the imshow command

frameGrey=frame (:,:,1);

imshow (framGrey)

\end{verbatim}

The reason that this image appears in grey is that the values
in the two dimensional matrix are now interpreted as grey
values.

S N

6 Finally, in order to read continuously from a camera and
display the obtained frames in a loop one can use the
following program. Press the \textit{qg} key to terminate
the loop.

8 \begin{lstlisting}
9 close all; clear all;

11 stream=videoinput ('winvideo',1);
12 triggerconfig(stream, 'manual');

14 VideoLoop=figure;
15 while true

16 frame=getsnapshot (stream) ;

17 imshow (frame) ;

18 $retrieves a keyboard interruption

19 key=get (gcf, 'currentkey');

20 $if the pressed key is 'g', the loop is interrupted and
the figure closes

21 if strcmp(key, 'g')

22 close (VideoLoop) ;

23 break;

24 end

25 end

2.1.2 Image filtering with convolutions

Let us now start manipulating a singe grey image further. As a first example let us
created a new smoothened image I™°*" by averaging the pixels over a certain region,
say over a region of size 11 by 11 pixels. The value of a pixel at (z,y) of the new
image is then defined by us to be the average pixel values of an 11 x 11 image patch,
and we shift around the centre pixel at (z, y),

5 5

‘ 1
Imean(x7y):ﬁ Z Z I(z —u,y —v). 2.1
5

u=—5v=—

30 | Sensing, acting and control

The new image is a bit smaller than the original as the pixels at the edges don’t
have pixels on one side. We could adjust for this in various ways such as buffering
a surrounding are with with constants pixels or using periodic boundary conditions
where we add pixels from the other side of the matrix. In order to accommodate filters
with even sizes of pixels, we could also assigned the average within a patch of the
image to the upper left corner of this patch, or too any other location within the patch.
The important part is that we are moving a square systematically around the image
and in this way generate a new processed version of this image.

In order to generalize this averaging procedure later to averages with different
weights, we define a matrix k(u,v) with indices u and v. to continue the example
above, both indices could run between the values of -5 and 5. All the elements of this
matrix are set to one, k(u,v) = 1, so that the above equation is equivalent to

1
e z,y) = 55 > Y @ —uy — v)k(u, v), 2.2)

where N = 11 is the number of pixels in the filter.

Fig. 2.1 Original picture on the left and the filtered version with a uniform filter of size 40 x 40.

An example of such a procedure is shown in Fig. 2.1. On the left side is the original
image acquired with a webcam with 720 x 1280 pixels. On the right is a smoothened
version of it using the procedure just defined. The image is a bit more blurry, but
we will see that this will be useful for some of the applications below such as when
downsampling images or to reduce noise in the image.

The matrix k is called a kernel, and the operation described in eq.2.2 is called a
convolution. For a large number of pixels it is sometimes more convenient to describe
the image as a continuum, so that a convolution can be written as

[mean) — / / I — u,y — v)k(u, v)dudv. 2.3)

Of course, we can define convolutions in different dimensions, not just in the two
dimensional picture plane described here. By defining different kernel function we
can achieve different effects. For example, it might seem more natural to average an
image more smoothly, given nearby nodes more weight than distant nodes. This can
be achieved with a Gaussian kernel

Basic computer Vision | 31

1 —(u,v)?
k(u,v) = ——e™ 2 . (2.4)
2o
Smoothing with Gaussian kernels is a common technique in computer vision, and the
resulting picture for our test image is shown in Fig. 2.1b. The kernel function also
defines a filter, and a convolution can be seen as a linear filtering operation.

Exercise

An example program that was used to produce the filtered image shown on the right
in Fig. 2.1 is given below. This program uses the build in Matlab function conv2()
to calculate the 2-dimensional convolution. Write a Matlab function that replaces this
function and implements the convolution from scratch. Explain the black border in the
filtered image.

original=frame(:,:,1);
imshow (original)

filter=ones (40);

filtered=conv2 (filter,double (original));
filtered=filtered./max (max (filtered)) *x255;
imshow (uint8 (filtered))

B T Y T

2.1.3 Linear filtering: Finding a color blob

An easy way to localize some environmental object is by tagging it with some unique
colour and trying to detect this in the image. This will be used later for some exercises
in localization and planing. For the following exercise take some coloured electrical
tape of some other coloured material and attach it to the robot arm. We can first test
it statically, but we will later use it to detect the location of the arm when the arm is
moving.

To detect a certain colour in an image we need to process the colour channels.
We can write a little application that takes an image and in which we could point to a
location in the image to return the values. This program is shown in Table ??. (explain
program)

Once we have RGB value for the target colour we can use them to locate the colour
in a video stream. For this it is useful to take some of the absolute differences between
a video screen colour values and the target values. Small values indicate pixels close
to the target colour. Since the target area corresponds to a cluster of such pixels, we
could use an averaging method such as Gaussian smoothing followed by finding the
minimum to locate the centre of the target area.

An alternative to the colour method for finding the position of the robot arm it
motion segmentation. Segmentation of an image is an important step in building scene
representations, and the following sections talks about some methods that commonly
build the basis of segmentation for still images. The beauty of video streams is that
there is more information in it that we can use for segmentation. In the example with
the robot arm, we assume that only the robot arm is moving. We can therefore use
differences of video captures in consecutive frames to determine the moving object.

32 | Sensing, acting and control

Finally we want to translate the tracking of the robot arm to a number representing
the degrees of rotation of the upper motor of the robot arm. For this we will use machine
learning techniques. The first is to use linear regression on the motion segmented robot
arm. The other is to use the support vector regression to map the (z,y) coordinates
to rotation angles. Note that both cases correspond to supervised learning that require
measurements that we will use as teacher signals.

Exercise

e Write a program to locate a colour blob in a video stream and indicate this target
location with a circle. Similarly, use as an alternative motion segmentation and
compare the location estimation in form of a pixel coordinate between the two
methods.

e Write a program that translates a pixel coordinate to the estimation of the rotation
angle of the motor and compare the location estimation of the two segmentation
methods with the coordinates returned by the motors.

2.1.4 Gradient filters: Edge detection

While Gaussian smoothing is useful for noise reduction, it does not help us much
with the identification of objects. To work towards such a goal we should recognize
that objects are somewhat defined by their extensions, and the borders of objects are
typically characterized by edges in a two-dimensional image. It is hence useful to think
about how to build filters that highlight edges. For example, let us consider an image
with a sharp vertical edge like the one give by the matrix

100 100 100 10 10 10
100 100 100 10 10 10
100 100 100 10 10 10
100 100 100 10 10 10

IV =

and lets convolve this with the filter k = (1, —1) the resulting image is

00900
00900
00900
009000

Ivedge _

Similar, let us consider an image with a horizontal edge

100 100 100 100 100 100
100 100 100 100 100 100
10 10 10 10 10 10
10 10 10 10 10 10

"=

and the filter k = (1

1) . The resulting image highlights a horizontal edge

Building and driving a basic Lego NXT robot | 33

00000
7vedee — | 90 90 90 90 90
00000

Of course, edges in our webcam pictures are never this sharp, and it is hence useful to
smoothen them. A continuous version of edge filters is for example described by Gabor
functions such as the ones shown in Fig. 2.2a and b. A Gabor function is described by
a sinosodally-moduated Gaussian,

w2402 2

k(u,v) =€~ "2xo? cos(Tu +). (2.5)

The example of a 642 pixel filter with parameters v = 0.5, ¢ = 10, A\ = 32, and
© = m/2 is shown in Fig. 2.2a. This filter can also be rotated with a rotation matrix

T cos(¢) sm(@) (a:)
<y) < < —sin(y) cos(p) y (2.6)
as shown in Fig. 2.2b for ¢ = 7.

A. Gabor function with \phi = \pi/2 B. Rotated version of A

Fig. 2.2 Example of Gabor functions for (a) vertical and (b) horizontal edge detection.

Exercise

Take an image of your choosing and use Gabor filters to filter the image. Show the
resulting image with two different angular parameter.

2.2 Building and driving a basic Lego NXT robot

2.2.1 Arm and Tribot

We will actively use the Lego Mindstorm robotics system in this course. This system
is based on common Lego building blocks that we use for two principle designed

34 | Sensing, acting and control

that we build below. The Lego NXT robotics system includes a microprocessor in a
unit called the brick which can be programmed and used to control the sensors and
actuators. The brick is programmable with a visual programming language provided
by Lego, and there exists a multitude of systems to program the brick with other
common programming languages. We will be using the brick mainly to communicate
with the motors and sensors while implementing the machine learning controllers on
an external computer connected by either USB cable or wireless bluetooth.

We will be using two basic robot designs for the examples in this course. One is
a simple robot arm that is made out of two motors with legs to mount it to a surface
and a pointer as shown in Fig.2.3 A. Our basic robot arm is constructed by attaching
the base of one motor, that we call elbow, to the rotating part of a second motor, that
we call the shoulder, as shown in Fig.2.3A. We also attach a long pointer extension to
elbow that will become useful in some later exercises. Finally, we add some legs that
we can be taped to a table surface in order to stabilize Motor2 to a fixed position. The
precise design is not crucial for most of the exercises as long as it can rotate freely
both motors.

We will also use a basic terrestrial robot called the tribot shown in Fig.2.3B. The
tribot used here is a slight modification of the standard tribot as described in the Lego
NXT robotics kit. A detailed instruction for building the basic tribot is included in the
Lego Kkits, either in the instruction booklet or the included software package. It is not
crucial that all the parts are the same. The principle idea behind this robot is to have
a base with two motors to propel the tribot. and several sensors attached to it. There
is commonly a third passive wheel that is only used to stabilize the robot, and we
included a way to lock it to a straight position to facilitate cleaner movements along a
straight line. Some versions of Lego kits have tracks that can be used in most of the
exercises. The exact design is not critical and can be altered as seen fit.

2.2.2 NXT Matlab Software Environment

The ‘brain’ of our robots will be implemented on PCs and we will use a Matlab
environment to implement our high-level controllers. Most examples are minimalistic
in order to concentrate on the algorithmic ideas behind machine learning methods
explored in this book. While there are more advanced robotics environments with
more elaborate frameworks such as ROS (Robot Operating System), we want to keep
the overhead small by using only direct methods to communications with actuators
and sensors. This section describes the Matlab environment and packages that we use
in the following.

2.2.3 Mindstorm NXT toolbox installation

We will use some software to control the Lego actuator and gather information from
their sensors within the Matlab programming environment. To enable this we need to
install software developed at the German university called ‘RWTH Aachen’, which in
turn uses some other drivers that we need to install. Most of the software should be
installed in our Lab, but we will outline briefly some of the installation issues in case
you want to install them under your own system or if some problems exists with the
current installation. The following software installation instructions are adapted from

Building and driving a basic Lego NXT robot | 35

A. Robotarm with attached B. Tribot with ultrasonic, touch
dawing pen and light sensor

Fig. 2.3 (A) A robot arm made out of two motors, shoulder and elbow, a pointer arm, and some
support to tape it to a table surface. This version has also a pen attached to it. (B) Basic Lego
Robot called tribot with the microprocessor, two motors, and three sensors, including a ultrasonic
and touch sensor pointing forward and a light sensor pointing downwards.

Fig. 2.4 Basic Lego Robot with microprocessor, two motors, and a light sensor.

RWTH Aachen University’s NXT Toolbox website:
http://www.mindstorms.rwth-aachen.de/trac/wiki/Download4.03

1. Check NXT Firmware version
Check what version of NXT Firmware is running on the NXT brick by going
to "Settings" > "NXT Version". Firmware version ("FW") should be 1.28. If it
does not, it needs to be updated (Note: The NXT toolbox website claims version
1.26 will work, however it will not)
To update the firmware:

36 | Sensing, acting and control

The Lego Mindstorms Education NXT Programming software is required to
update the firmware. In the NXT Programming software, look under "tools"
> "Update NXT Firmware" > "browse", select the firmware’s directory, click
"download".

2. Install USB (Fantom) Driver (Windows only)
If the Lego Mindstorms Education NXT Programming software is already on
your computer, this should already be installed. Otherwise, download it from:
http://mindstorms.lego.com/support/updates/
If you run into problems with the Fantom Library on windows go to this site for
help. http://bricxcc.sourceforge.net/NXTFantomDriverHelp.pdf
If you have Windows 7 Starter edition the standard setup file will not run properly.
To install the Fantom Driver go into Products and then Lego NXT _Driver_32
and run LegoMindstormsNXTdriver32.
The fantom USB driver seem not to work on the Mac, but we will anyhow use
the bluetooth connections.

3. Download the Mindstorms NXT Toolbox 4.03:
Download: http://www.mindstorms.rwth-aachen.de/trac/wiki/Download

e Save and extract the files anywhere, but do not change the directory struc-
ture.
e The folder will appear as "RWTHMindstormsNXT"

4. Install NXT Toolbox into Matlab
In Matlab: "File" > "SetPath" > "Add Folder", and browse and select "RWTH-
MindstormsNXT" - the file you saved in the previous step.

e Also add the "tools" folder, which is a subdirectory of the RWTHMind-
stormsNXT folder.
e Click "save" when finished.

5. Download MotorControl to NXT brick
Go to http://bricxcc.sourceforge.net/utilities.html for the download. Use the USB
cable for this step

Windows: Download NeXTTool.exe to RWTHMindstormsNXT/tools/MotorControl.
Under RWTHMindstormsNXT/tools/MotorControl, double click Trans-
ferMotorControlBinaryToNXT, click "Run", and follow the onscreen in-
structions. If this fails, try using the NBC compiler (download from
http://bricxcc.sourceforge.net/nbe/) instead of the NeXTTool; again save
it under the MotorControl folder.

Mac: Download the NeXTTools for Mac OS X. Run the toolbar and open the
XNT Explorer (the globe in the toolbar). With the arrow key at the top,
transfer the file MotorControl21.rxe to the brick.

6. Setting up a Bluetooth connection

To connect to the NXT via bluetooth you must first turn on the bluetooth in the
NXT and make sure that the visibility is set to on. Then use the bluetooth device
on your computer to search for your specific NXT. By default the name is NXT,
but as a first step we will rename each brick.

Building and driving a basic Lego NXT robot | 37

Create a connection between the computer and the NXT. When you create the
connection between the NXT and the bluetooth device the NXT will ask for a
passkey (usually either 0000 or 1234 on the NXT screen and press the orange
button. The computer will then ask for the same passkey. To test the connec-
tion, type the command COM_OpenNXT(’bluetooth.ini’); in the Matlab
command window. The command should run without any red error messages.
If there is an error check to see if the COMPort the Matlab code is looking
for is the same as the one used in the connection made between the blue-
tooth device and the NXT. Also turning the NXT off and back on again can
help. After every failed COM_OpenNXT(’bluetooth.ini’); command type
COM_CloseNXT(’all’); to close the failed connection for a clean new at-
tempt. To switch on a debug mode enter the command DebugMode on before
entering the command COM_OpenNXT (’bluetooth.ini’); . Also, make sure
that the bluetooth.ini file is present. There are sample files for Windows ad Linux
(Mac) in the main RWTH toolbox folder. Also, check if the port name is correct
by typing 1s -1tr /dev in a terminal window.

7. Does it work?
In Matlab, enter the commands below into the command window. The command
should execute without error and the NXT should play a sound.
h=COM_OpenNXT(’bluetooth.ini’);
COM_SetDefaultNXT(h);
NXT_PlayTone (400,300) ;

2.2.4 Basic Matlab NXT commands

The following is a summary of most Matlab commands from the NXT toolbox. The
documentation from the RWTH web site contains always updated information.

2.2.4.1 Startup NXT

The first thing to do is make sure the workspace is clear. Enter:
COM_CloseNXT(’all’);
close all;
clear all;

To start, enter:
hNXT=COM_OpenNXT; %hNXT is an arbitrary name
COM_SetDefaultNXT(hNXT); %sets opened NXT as the
Y%default handle

2.2.4.2 NXT Motors

Motors are treated as objects. To create one, enter:
motorA = NXTMotor('a’); %motorA is an arbitrary name, 'a’ is
%the port the motor connected to

This will give:

38 | Sensing, acting and control

WUATUE 710 0 00100

e GX Debug Cedtip Widw o0
Shartidn 2] 10w tis Wbl B What's teme

Y.

ARBI Y E| O o

@l Tt Aol @ o s D e 4 A TLAD

Cottemt Folds * O » X

Wi

Rl Wonspoe

% O«n

- PO

* L Regeson
(0L ek D i
¥ 3 Theemwg
(2 Triade
T Smae shon vy
Anrat
£ Awbolri et
wor oyt vt

5> COM_CpurNIT()

wna =
N

Vel

CoanmctionYypeNure
CommactisaTyseValze:

Handis;

UmsaN
New
S
‘Yindowa'
0
1
Firentallancindtiuat/ st uniitandie

Inifslensrm: **

Caw
DaudPate:
Dasabinal

Tirmput:
FendZesd?ause |
Sendfaceiveluuse:
Last SanaTarm !

[Tiza:

YR

X
Nk
A
Hax
K

Perantaunaiamiees /Lant TandTinm

(3 P —,
Command Histoly

LeStruct/LastPaceiveTize

NXTRACH
MITHOTCR_geedtuta:

NATEOTCR cua
NXTEOTOR_gweCuctwaritotee
NXTHOTCH_awtCurresslotac

sacluceivecda
ndazoPece tveeTa
Gyrotenan

301633067291
PrrenteianzlieStouce /NITHOMCH getStace
Preontallaneiasteuct (TETRCCCO, setStatn
functien_tandle]

netion_bandie]

nction_tandle]

1 functisn_headle}

1 fuactisn_baadle)

nction_tandie]

scenteffancledtruct/ SyroSenanrottan:

COM_Cpen¥aT ()

RE

Hgw
-0 x
LR sewa s
=

<UL Sz

FecuntelfangleStruct /LastCenUSTirm
Peruntaltancladteuct/ Iycanient

LaatGet U3 Tirm:
Byteafesc;

tved:

3 tuce/
Packesazeas

Prrantaftansiedtruat/Fanketadems

W detls vkl
PacketzPace ived:
Tranaraasleaterers;
CrwationTire:

Fzcentetfansleltruct/Facket2fecetved
Prrantam
12010 4 11 3 51 25.9370)
Permntellantladiiunt/ Cannaitnd
s
Bromataltaneladoiues/Sniutalln
1

tedccuatste Errasa

Connmutedi
Index:

Dalututel
UseNXCEatorlontesl:

-

Fig. 2.5 Example of calling the COM_OpenNXT () command without arguments. The command
returns some information of about the system.

NXTMotor object properties:
Port(s): 0

Power: 0

SpeedRegulation: 1
SmoothStart: 0

TachoLimit: 0
ActionAtTachoLimit: '‘Brake’

(A)

o

n)
off)
no limit)

brake, turn off when stopped)

(
(
(
(

Below is a list of these properties and how to change them:

Power
Determines speed of the motor
motorA.Power=50; % value must be between -100 and 100 (negative
% will cause the motor to rotate in reverse)

SpeedRegulation
If the motor encounters some sort of load, the motor will (if possible) increase it power
to keep a constant speed

motorA.SpeedRegulation=true; % either true or false, or
alternatively, 1 for true, 0 for

false

SmoothStart

Building and driving a basic Lego NXT robot | 39

Causes the motor to slowly accelerate and build up to full speed.
Works only if ActionAtTachoLimit is not set to "coast’ and if TachoLimit>0

motorA.ActionAtTachoLimit= true; % either true or false, or
% 1 for true, 0 for false

ActionAtTachoLimit

Determines how the motor will come to rest after the TachoLimit has been reached.
There are three options:

1. ’brake’: the motor brakes

2. ’Holdbrake’: the motor brakes, and then holds the brakes

3. ’coast’ the motor stops moving, but there is no braking

motorA.ActionAtTachoLimit=’coast’;

TachoLimit
Determines how far the motor will turn

motorA.TachoLimit= 360; % input is in terms of degrees

Alternative Motor Initiation
Motors can also be created this way:

motorA=NXTMotor(’a’, ’Power’, 50, ’TachoLimit’, 360);

SendToNXT
This is required to send the settings of the motor to the robot so the motors will actually
run.

motorA.SendToNXT() ;

Stop

Stops the motor. There are two ways to do this:

1. ’off” will turn off the motor, letting it come to rest by coasting.

2. ’brake’ will turn cause the motor to be stopped by braking, however the motors will
need to be turned off after the braking.

motorA.Stop(’off?);

ReadFromNXT();
Returns a list of information pertaining to a motor

motorA.ReadFromNXT() ;
Entering motorA.ReadFromNXT.Position(); will return the position of the motor
in degrees.

40 | Sensing, acting and control

ResetPosition
Resets the position of the motor back to 0
motorA.ResetPosition();

WaitFor
Program will wait for motor to finish current command. For example:

motorA=('a’, 'Power’, 30, 'TachoLimit’, 360);
motorA.SendToNXT();
motorA.SendToNXT();

The immediate repetition of the motor command will cause problems as the motor can
only process one command at a time. Instead, the following should be entered:

motorA=('a’, 'Power’, 30, 'TachoLimit’, 360)
motorA.SendToNXT();
motorA.WaitFor();
motorA.SendToNXT();
The exception to this is if TachoLimit of the motor is set to 0.

2.2.4.3 Using Two Motors At Once

Some operations, for example driving forward and backwards, require the simultaneous
B=NXTMotor(’b’, "Power’, 50, 'TachoLimit’, 360);

use of two motors. Entering; C=NXTMotor(’c’, 'Power’, 50, ‘'TachoLimit’, 360);
B.SendToNXT();
C.SendToNXT();

will start the bot moving, but the signals for both motors to start at will not be sent at

exactly the same time, so the robot will curve a little and fail to drive in a straight line.

Instead, you should enter:

BC=NXTMotor(’bc’, ’Power’, 50, ’TacholLimit’, 360);

OR

BC = NXTMotor(’bc);
BC.Power=50;
BC.TachoLimit=360;

Turning left or right can be achieved by only running one motor at a time, or by moving
both motors, but one slower than the other.

2.2.4.4 Sensors

The following commands are used to open a sensor, plugged into port 1:

Building and driving a basic Lego NXT robot | 41

OpenSwitch(SENSOR_1); % initiates touch sensor
OpenSound(SENSOR_1, 'DB’); % initiates sound sensor, using
% either ‘DB’ or 'DBA’
OpenLight(SENSOR_1, 'ACTIVE’); % initiates light sensor as
% either ACTIVE’ or 'INACTIVE’, The following com-
% plugged into Port 1
OpenUltrasonic(SENSOR_1); % initiates ultrasonic sensor
% plugged into Port 1

mands are used to get values from the sensor plugged into port 2:

GetSwitch(SENSOR_2); % returns 1 if pressed, 0 if depressed
GetSound(SENSOR_2); % returns a value ranging from 0-1023
GetLight(SENSOR_2); % returns a value ranging from 0 to

% a few thousand
GetUltrasonic(SENSOR_2); % returns a value in cm

To close a sensor, ex. Sensor 1:
CloseSensor(SENSOR_1); %properly closes the sensor

2.2.4.5 Direct NXT Commands

PlayTone
Plays a tone at a specified frequency for a specified amount of time

NXT_PlayTone(400,300); % Plays a tone at 400Hz for 300 ms
KeepAlive
Send this command every once in a while to prevent the robot from going into sleep
mode:
NXT_SendKeepAlive (’dontreply’);
Send this command to see how long the robot will stay awake, in milliseconds:
[status SleepTimeLimit] = NXT_SendKeepAlive(’reply’);
GetBatteryLevel
Returns the voltage left in the battery in millivolts
NXT_GetBatteryLevel;
StartProgram/StopProgram
To run programs written on LEGO Mindstorms NXT software, enter:
NXT_StartProgram('MyDemo.rxe’) % the file extension ".rxe’ can be

% omitted, it will then be automatically
% added

42 | Sensing, acting and control

Entering NXT_StopProgram stops the program mid-run

2.2.5 First examples:

‘Wall avoidance

The following is a simple example of how to drive a robot and use the ultrasonic

sensor. The robot will drive forward until it is around 20 cm away from a barrier (i.e.
a wall), stop, beep, turn right, and continue moving forward. The robot will repeat this
5 times. Attach the Ultrasonic sensor and connect it to port 1. The study and run the
following program.

[N T N

20
21
2
23
24
25

26
27
28
29
30
31
32
33

COM\-CloseNXT ('all'); &\%cleans up workspace\)\

close all;\\

clear all;\mbox{}\\

hNXT=COM_OpenNXT ('bluetooth.ini"); &\% initiates NXT, hNXT is

an arbitrary name\\
COM\.-SetDefaul tNXT (hNXT) ; &\%sets default handle\\\mbox{}\\

OpenUltrasonic (SENSOR_1) ; \\\mbox{}\\

forward=NXTMotor ('BC';); \&\% setting motors B&C to drive forward\)\
forward.Power=50;\\

forward.TachoLimit=0;\\

turnRight=NXTMotor ('B'); \&\% setting motor B to turn right))\
turnRight.Power=50;\\

turnRight.TachoLimit=360; \mbox{}\\

for i= 1:5\\
\indent while GetUltrasonic (SENSOR_1)>20\\
\indent\indent forward.SendToNXT(); &\%sends command for robot
to move forward\\
\indent\indent &\%TachoLimit=0; no need for a WaitFor () statement)\
\indent end \%while\\
\indent forward.Stop('brake'); &\%robot brakes from going forward\\
\indent NXT_PlayTone (400,300); &\%plays a note\\
\indent turnRight.SendToNXT; &\%sends the command to turn right)\)\
\indent turnRight.WaitFor; &\%TachoLimit is not 0; WaitFor ()
statement required\\
end \%for \mbox{}\\

turnRight.Stop ('off'); &\%properly closes motors\\
forward.Stop ('off");\\

CloseSensor (SENSOR\.1); &\%properly closes the sensor))\
COM_CloseNXT (hNXT); &\% properly closes the NXT\\
close all;\\

clear all;

Exercises: Line following

Writing a controller that uses readings from its light sensor to drive the tribot along a
line. You can use electrical tape for the line to follow.

Pose and state space | 43

2.3 Pose and state space

In order to control a robot we must know in which state it is in. This is usually called a
pose in robotics, though other areas in physics and engineering also call this generally
a state. The collection of all possible states is called the state space. Thus, while the
state or pose describes the current configuration of a robot, the state space contains in
addition some information of the environment such as pose constrains. Sometimes we
could also talk about the state of a system which includes a robot and the environment,
and the specific use is usually clear from the context.

The physical state of an agent can be quite complicated. In order to describe the
robot in all its details we neeTd to describe the physical shape of the robot, the state
of motors, the colour of components, the charging level of the battery etc. Thus, a
detailed description of the physical state of a robot would need a lot of variables, and
such a description space would be very high dimensional. Working in high dimensional
spaces is often a major computational challenge. However, not all the dimensions are
relevant in solving specific tasks, so that we can often simplify the description in order
to better manage specific control problems. The simplification of the decryption is
better described as abstraction, which is an important concept in science in general.
To abstract means to simplify the system in a way that it can be described in as
simple terms as possible to answer the specific questions under consideration. This
philosophy is sometimes called the principle of parsimony, also known as Occam’s
razor. Basically, we want a model as simple as possible, while still capturing the main
aspects of the system that the model need capture to function properly.

For a mobile robot, most of the time we are mainly concerned with the position
of the robot in space and its orientation. The pose, [, of a mobile robot that lived in a
two-dimensional plane can hence be described by three variable, the planar positions
x and y, and the rotation angle © as shown in Fig. 2.6A,

X
1=y 2.7
)

An airplane or marine underwater vehicle usually needs 6 variables to describe a basic
pose, three spacial position coordinates and there angles called pitch, roll and yaw as
shown in Fig. 2.6B. Our simple robot arm can be described by two angles, although
industrial robots have often as many as 6 degrees, and the human arm is considered to
have 7 degrees of freedom.

To illustrate a state space, let us consider a planar robot that should navigate around
some obstacles from point A to point B as shown in Fig.2.7A. An obstacle, such as
the one represented by the grey area in Fig.2.7A, represents state values that are not
allowed by the system. We have reduced the description of an robot navigation system
from a very high physical space to a three-dimensional (3D) pose space by the process
of abstraction. However, there are still an infinite number of possible states in the state
space if the state variables are real numbers. We will later discuss some navigation
algorithms where we will use search algorithms in the state space to find solutions, and
having an infinite space is then problematic. A common solution to this problem is to
make further abstractions and to discretize the state space to allow the state variables to
only have a finite number of states. An example is shown in Fig.2.7B, where we used a

44 | Sensing, acting and control

A. Planar mobile robot B. Aircraft angles C. Robot arm

e
X

Pitch Axis

Roll Axis

Yaw Axis

Fig. 2.6 (A) Mobile robot in a plane. (B) Angles of an Aircraft. (C) Robot arm.

grid to represent the possible values of the robot positions. Such a discretization is very
common in practice although it introduces some problems of its own. It is possible to
make the discretization error increasingly small by decreasing the grid parameter, Az,
which describes the minimal distance between two states at the expense of increasing
the state space, though we will later also discuss other solutions.

A. Navigation with obstracle B. Discrete configuration space

% A |]
AREE

Fig. 2.7 (A) A physical space with obstacles in which an agent should navigate from point A to
point B. (B) Descretized configuration space.

Exercise: Robotarm State Space Visualizer

The goal of this exercise is to graph the state space in which a double jointed robot
arm is able to move. Use the robot arm build from two NXT motors and secure it
on the table so that you can move its pointing finger around by externally turning the
motors. We will use the ability of measuring this movement in the motors to record
the corresponding angles of the motors. Use a box, a coffee mug or some other items
to create an obstacle for the arm to move around.

At the beginning of the execution of this program the tip of the pointer of the robot
arm should touch an obstacle. You should then move the pointer along the obstacle to
generate and display an occupancy map. An occupancy grid is an array with entries
of zeros for cells that are possible poses of a robot and entires of one for state spaces

Kinematics and motion models | 45

Fig. 2.8 (A) A simple robot arm with two joints that can point at an obstacle.

that are occupied by obstacles. Make sure that the movement and discretization is
appropriate so that no gaps in state space exists that seem to open a path into the
interior of the object. You can use the function ReadFromNXT.Position() in Matlab
to read the angles of each motor. You can record the trajectory given by the two angles
and generate an occupancy grid from this by checking if the trajectory crossed a grid
point in a discretized state space.

2.4 Kinematics and motion models

2.4.1 Kinematic model of the two-joint robot arm

To control an object, we need to understand the effect of a motor command such as
turning on a motor for a certain time. The equations describing such an influence are
called a kinematics model or motion model in robotics. Let us illustrate this with the
two-joint robot arm. We consider first a single motor, and assume that we can drive the
motor with a constant power p for a certain time ¢. This would imply that we can start
to move the motor instantaneously with a constant rotational velocity v, at the initial
rotation angle of (0). The rotation angle at time ¢ is then give by

o(t) = ¢(0) + vyt (2.8)

This is certainly an approximation as the motor need some time to get to a certain
speed and will also not stop immediately when turned off. There are many sources of
noise in Robotics that will alter the precise end point. A major aim of the approaches
advocated in later chapters is to address such noisy operations in a more general way.
But for now we only want to illustrate the basic concepts of robotic movements.

You should try to follow our discussions here in practice by trying it out with a
simple robot arm, one motor with a pointer. Apply to the motor a small power, e.g.
p=10, and find out the time it needs to come back to the initial position after one full
term. For example,

COM_CloseNXT(’all’)

46 | Sensing, acting and control

h=COM_OpenNXT(); COM_SetDefaultNXT(h);
motorA=NXTMotor(’a’, ’Power’,10);

tic;

motorA.SendToNXT() ;

while toc<3.7

end

motorA.Stop(’brake’);
COM_CloseNXT(’all’)

gives results roughly in a full turn A, = 2, so that the velocity constant is v, =
27 /3.7. Of course, we can also provide a desired angle as motor command for the
Lego motors.

Fig. 2.9 The geometry of a simple robot arm with two joints.

We now know how a motor command is effecting the angle of the joint. Next we
can calculate how the angles will effect the position of the arm based on the geometry
of the arm. For example, we might want to know how the endpoint of the arm in the
coordinate system of the base is related to the angles of the motors

(%0,90) = £(p1,p2) 2.9)

We denoted here the coordinates of the endpoint xy and yg with index 0 to indicate
that these are the coordinates with respect to the coordinate system given by the base.
(20, yo) is hence a specific point in the coordinate system given by the axis X and Yj.

In order to find this relation, let us consider another coordinate systems, the one that
is given by the pointer of the first motor. This is illustrated in Fig. 2.9. A point (z1, y1)
in the co-ordinate system of axes X; and Y7 can be expressed relative to the base by
adding the length of the arm [; to the x; value and then rotating the corresponding
vector with angle ;. This can be written elegantly with the matrix operation

Zo T
vo | =A1 | n (2.10)
1 1

where the matrix operator is defined as

Kinematics and motion models | 47

cos(p;) sin(p;) 0 101
A; = | —sin(p;) cos(p;) 0 010 (2.11)
0 0 1 001

Similarly, a point (z2, y2) relative to the coordinate system X5 and Y5 can be expressed
in X and Y] coordinates with a similar equation

Z1 T2
1 | =A2 | v2 (2.12)
1 1

Now, the coordinates of the endpoint of the two-segment arm in the X5 and Y5
coordinate system is simply 2 = y2 = 0. The coordinates of the endpoint relative to
the base are therefore

o 0
Yo | =A142(0 (2.13)
1 1

This equation, together with the description of how the angles change with each motor
command, represent the basic kinematic model of our basic robot arm.

While this motion model describes our basic expectation of where end point of the
arm is located after executing a motion command (angle update), we sometimes also
need the inverse model. The inversion of the model is not always straight forward
as this is usually an ill posed problem, meaning that there are often more than just
one solution. In the specific case of our robot arm there are either no solution (when
the target it outside the reach of the arm), exactly one solution (for targets that could
be reached when both segments are aligned), or two solutions in all other cases (one
with the elbow pointing right and one with the elbow pointing left). In practice is is
even common to be able to find the inverse with other constraints such as areas with
obstacles of specific paths along a motion. There excises a variety of mathematical
tools for such problems to find analytical solutions. We will not discuss this further
here, but we will later take another approach, that of finding of inverse kinematics by
reinforcement learning.

2.4.2 Motion model for a differential drive robot

‘We now turn to the kinematics model of a differential drive robot like our tribot system.
The geometry of such a robot is outlined in Fig. 2.10. It is again useful to distinguish
two coordinate systems, the global reference frame of the floor, (z, y, 8), and the local
reference frame centred on the robot (robocentric), (zr, yr,0). We can again use the
matrix operator 2.11 to translate between these two reference frames, where [is now
the distance between the origin of the floor coordinate system and the origin of the
robot coordinate system that we have chosen to be a point P between the two driving
wheels.

We no want to know how the velocity of the robot, v is related to the individual
velocities of the two motors. Let’s call the velocities of the motors ¢ and 5. Let
us first calculate the contribution of each wheel to the motion in the robots reference
frame. In this reference frame the contribution of movements in the the YR direction
is zero, yr = 0, since the wheels don’t produce a movement in this direction. The

48 | Sensing, acting and control

Fig. 2.10 The geometry of a differential drive robot.

contribution of each wheel to movements in the X direction is independent of each
other, so we can simple add each individual movement. So let’s consider that only
wheel one moves with velocity ¢;. The it generates a velocity of 1/2 of what it would
do if it was the movement of an unattached motor. The same is true for the second
motor, so that the instantaneous velocity along the Xy axis is given by

1 1
TR = 57"951 + 57’¢2» (2.14)

where r is the radius of the wheels. The contribution to the rotational speed is also
independent for each motor and depends on the distance d between the wheel. SInce
the velocity of wheel 1 generates a clockwise movement around wheel 2, and the
velocity of wheel 2 produces an anticlockwise rotation around wheel 1, the rotation
velocity is given by

0= %r@l — %rgbg. (2.15)
To transform this velocity vector into the floor reference frame it is good to realize that
the velocity does not depend on the specific distance between the reference frames.
Hence, the velocity of the robot in the floor reference frame is given by

cosf —sinf 0 IR
v=| sinf cosf 0 0 (2.16)
0 0 1 0

While such a basic differential drive robot is hence quite easy to describe, many
robots have more complicated geometries with many more degrees of freedom. They
typically have also additional features and constrains that must be considered such as
steerable wheels and slippage. Book dedicated to robotics does typically include more
discussions on these kind of extensions. Instead of getting into this, we will concentrate
on learning such motion models with machine learning methods.

2.4.3 Motion model for a line following robot

In this example we will develop a line racing robot that needs to guess the distance it
has traveled. The race is along a straight line of electric tape. The robot starts in the

Basic controllers | 49

middle of the tape and is expected to go forward until crossing an imaginary line at 1
meter. It then needs to go backwards and cross another imaginary line 1 meter in the
other direction of the midline. This back-and-forth movement is repeated a set number
of times, and the race ends when the robot crosses the midline the 10th time.

We can deploy the line following program from section ?? to make the tribot
follow the line. It is possible to optimize the parameters a bit since we know that the
movement is along a straight line. At this point we assume that the robot can reliably
follow a line. There movement of the robot we need to describe with the following
movement model is then essentially a one dimensional movement for position along
the line. The distance traveled, d, is then basically linear in the time ¢¢ in which the
line following program is activated, namely

df(tf) = 'Uftrmf (217)

The distance depends on the velocity parameter v¢ that has to be determined from
experiments. A similar equation applies for the backdoor movement with a possible
different velocity parameter vy,.

The better the motion model, the better the chances of winning in this competition.
The general challenge is to drive forward or backward only as much as possible to
cross the imaginary lines. Valuable time is waisted when overshooting the lines, but
not reaching the line is even worst as the competitor would be disqualified. A light
barrier could be used to aid in the judgement of the trial, but no feedback from the
light barrier to the tribot is allowed.

The individual distances of forward and backward movement have to be added up
to always have an estimation of the position,

x :/ vetedts -l—/ Uptpdtp (2.18)
{ts} {ts}

This is called path integration. A major problem of path integration is that errors in
each of the estimates will add up and can accumulate to a point where the position
estimate is not any more sufficient for an application. We will later study this example
when explicitly taking noise into account and also how to treat sensory input that
can correct our estimates somewhat. Such movements and position estimation without
sensory input is often called dead reckoning in robotics.

Exercise

Implement the line race and study how best to adjust the parameters to achieve win
this race.

2.5 Basic controllers

The basic ‘brain’ of a simple decision-making robot, usual called the controller in
robotics, should decide what actions to take depending on the sensory information. A
common example is where the system is given a goal state and the controller determines
what motor commands need to be initiated to reach this goal. This typically requires

50 | Sensing, acting and control

that we know the effect of motor commands on the system. But even this is not
sufficient in the case of noisy or disturbed movements so that other strategies have to
be included to react to situations where the goal has not yet been met. Control theory
is a discipline in engineering that has been crucial to operate complex machines,
and much of classical robotics is based on control theory. Our aim is to build smart
controllers so that our robots are able to achieve goals in a robust way, particularly
in an uncertain environment. In short, controllers are the brains of robots which use
sensory and motivational information to produce goal directed behaviour.

2.5.1 Inverse plant dynamics

A system to be controlled is often called the plant in control theory since methods
from this engineering area are typically applied to automation factories. A plant is the
dynamical object that can be characterized by a state vector

27 (t) = (1,x(t), X' (t),x"(t),). (2.19)

x(t) are the basic coordinates (pose) such as the position and heading direction of the
tribot or the angles of the robot arm. The state vector includes derivatives of first and
higher order to describe dynamic properties such the momentum or acceleration of the
plant. The state vector also includes a constant component.

The state of the plant is influenced by a control command u(t). A control command
can be, for example, sending a specific current to motors. The effect of a control
command u(t) when the plant is in state z(t) is described given by the plant equation

z(t + 1) = f(z(t),u(t)), (2.20)

In general we do not know the plant equation a priori, and an important part for machine
learning is learning the plant function f.

The contoller is the part of the system that must generate the appropriate motor
commands to achieve a goal. The most basic control problem is finding the appropriate
commands to reach a desired states z*(t). We assume for now that this desired state
is a specific point in the state space, also called a setpoint. Such a control problem
with a single desired state is called reaching. The control problem is called tracking
if the desired state is changing. In an ideal situation we might be able to calculate
the appropriate control commands. For example, if the plant is linear in the control
commands, that is, if f has the form

z(t + 1) = £(z(t), u(t)), (2.21)

and the plant function f has an inverse, then it is possible to calculate the command to
reach the desired state as
u* = f!(z)z". (2.22)

A block diagram of this strategy with a basic controller and the plant is shown in Figure
2.11.

As an example, let us consider the tribot moving a specified distance from a starting
point and that the system can be described by its position z(¢). Let « = ¢ be the motor
command for the tribot to move forward for ¢ seconds with a certain motor power. If

Basic controllers | 51

z*:desired u: control z:actual
—=———=——— | Controller Plant +————
state command state

Fig. 2.11 The elements of a basic control system.

the tribot moves a distance of d; in one second, then we expect the tribot to move a
distance of d; * ¢ in ¢ seconds. The plant equation for this tribot movement is hence

x(t) = x(0) + dy 1, (2.23)

To find out the parameter d;, or more precisely an estimate of the parameter that we
can mark with a hat, cfl, we can mark the initial location of the tribot, say x(, and let
the tribot run with a specific motor speed for 1 second. The parameter can then be
determined from the end location z; by

dy = (z1 — a0). (2.24)

Note that we learned a parameter from measurement in the environment. This is at
the heart of machine learning, and the formula above is our first learning algorithm.

Exercise

In this experiment we want the robot to move from a start position to a desired position
which is 60cm away from the start position. Ideally this could be achieved by letting
the motor run by ¢ = 60/d; seconds. Try it out. You need to estimate d; and to need to
run the tribot for t seconds. This can be done in while loop with the time () function.

2.5.2 Basic feedback control

In the last experiment we used the knowledge (or measurement) of a desired distance
and the knowledge of the inverse kinematic to reach a target pose. While the tribot
might come close to the desired state, a perfect match is not likely. There are several
reasons for such failures. One is that our measurement of the dynamics might be not
accurate enough. We also made the assumption that the rotations of the wheels are
linear in time, but it might be that the wheels slow down after a while due to power
loss or heating of the gears which alter physical properties, etc. Also, there is likely an
initial time the motor needs to get to the constant speed. But most of all, disturbances
in the environment can throw the robot off-track (such as a mean instructor). All these
influences on the controlled object are indicated in the Fig.2.12 by a disturbance signal
to the plant.

How can we compensate for those uncertainties? If we do not reach the desired
state we can initiate a new movement to compensate for the discrepancy between the

52 | Sensing, acting and control

Disturbance

z+*:desired e:motor u: control z:actual
Controller Plant Sensors
state error command state
Afferent

Fig. 2.12 The elements of a basic control system with negative feedback.

desired and actual state of the controlled object. For this we need a measurement of
the new position (which can itself contain some error) and use this measurement to
calculate the new desired distance to travel. We call the distance between the desired
location x* and the actual location x the displacement error

e(t) = z*(t) — z(t) (2.25)

This procedure can be iterated until the distance to the desired state is sufficiently
small. Such a controller is called a feedback controller and is shown in Fig. 2.12.
The desired state is the input to the system, and the controller uses the desired state
to determine the appropriate control command. The controller can be viewed as an
inverse plant model as it takes a state signal and produce the right command so that
the controlled object ends up in the desired state. The motor command causes a new
state of the object that we have labelled ‘actual state’ in Fig. 2.12. The actual state
is then measured by sensors and subtracted from the desired state. If the difference
is zero, the system has reached the desired state. If it is different than zero then this
difference is the new input to the control system to generate the correction move.

The negative feedback controller is amazingly successful in this example to drive
the tribot to a certain distance as specified in the program. Also, the controller makes
the task somewhat robust to a variety of disturbances. For example, take the robot
with your hand and move it to another distance; the tribot will soon reach the desired
state again. It is also interesting to change the proportionality constant d; in the plant
equation to a larger values. The tribot will then overshoot the target distance and might
there take some more iterations around the set point to reach the target, but the target
will be reached as long as the proportionality constant is not too far off. Finally, take
your hand and hold it between the tribot and the wall after the tribot reached the target
point. The tribot will then move backwards and again forward if you remove the hand.

2.5.3 PID controler

The negative feedback controller does often work in minimizing the position error of
a robotic systems. However, the movement is sometimes jerky and oscillate around
the setpoint. This is in particular the case when the plant has considerable inertia or
momentum which demands to not only take the current position but also the velocity
into account. It might also be useful to keep some history of control commands to
optimize the time it takes to get to the setpoint. Such additions are easily added to
the proportional controller discussed above. Here we discuss briefly a very common

Basic controllers | 53

feedback controller call PID coontroller that is a common ingredient in robotics
systems for basic control.

As already stated, the basic idea of a PID controller is to not only use the current
error between the desired state and estimated actual state, but to take some history and
momentum into account. For example, when the correction in each state takes a long
time, that is, if the sum of the errors is large, then we should make larger changes so
that we reach the setpoint faster. In a continuos system, the sum over the last errors
becomes an integral. Such a component in the controller should help to accelerate the
reaching of the setpoint. However, such a component can also increase overshooting
and leads to cycles which can even make the system unstable. To remedy this it is
common to take the rate of change in the error into account. Such a term corresponds
to the derivative in a continuous system. The name for a PID controller is actually
the acronym for Proportional, Integral and Derivative, and a block diagram of this
controller is illustrated in figure 2.13

. Disturbance
Proportional l
z*:desired :motor “u:control z:actual
€:moto Intergral Plant Sensors
state A error command state
Derivative Afferent

Fig. 2.13 The elements of a PID control system.

The motor command generated by a PID controller is given by

u(t) = kpe(t) + kr / e(t)dt + kpdzi(tt), (2.26)
where we have weighted each of the components with different constants. Numerically
we can replace the derivative with the difference of consecutive error terms and the
intergral as the sum of error terms. The major difficulty in applying this controller
is finding appropriate choices of the constants. These are often determined by trial
and error, and some recipes for choosing them can also be found. For engineering
applications it is also important to prove that such controllers lead to stable behavior,
which the PID controller does as long as the system is linear or not far from linear.

We have only scratched the surface of classical control theory at this point. In
order to make controllers robust and applicable for practical applications, many other
considerations have to be made. For example, we are often not only interested in
minimizing the motor error but actually minimizing a cost function such as minimizing
the time to reach a setpoint or to minimize the energy used to reach the setpoint.
Corresponding methods are the subject of optimal control theory. While we will not
follow classical optimal control theory here, we will come back to this topic in the
context of reinforcement learning in the fourth part of the book. Another major problem

54 | Sensing, acting and control

for many applications is that the plant dynamic can change over time and has to be
estimated from data. This is the subject of adaptive control where machine learning
will become essential. An adaptive controller also uses feedback from the environment
but will use this feedback to modify the behaviour of the controller. This is illustrated
in Fig.2.14. Adaptive control is a main focus of this book.

Disturbance

:

z :desired :motor u: control z:actual
N e:moto Contxoller Plant Sensors
state error command state
Afferent

Fig. 2.14 Adaptive control systems incorporate models for corrective adjustments in the system
indicated by the arrows going through these components. These models are trained with sensory
feedback or other forms of external supervision.

The control theory outlined so far has several other drawbacks in robotics envi-
ronments. In particular, it treats the feedback signal as the supreme knowledge not
taking into consideration that it can be wrong. For example, in the exercise above we
measured the distance to a wall to drive the tribot to a particular distance. If we put our
hand in between the wall and the tribot, the controller would treat our hand as the wall
and would try to adjust the position accordingly. A smarter controller might ask if this
is consistent with previous measurements and its movements it made lately. A smarter
controller could therefore benefit from internal models and an acknowledgement, and
corresponding probabilistic treatment, that the sensor information is not always reli-
able. Even more, a smart controller should be able to learn from the environment how
to judge certain information. This will be our main strategy to follow in this book.

Exercise: Wall following

Mount the ultrasonic sensor to the tribot so that it points perpendicular to the driving
direction. In this exercise you should write a PID controller so that the tribot can follow
a wall in a predefined distance.

