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Abstract Event-related potentials (ERPs) are tiny elec-
trical brain responses in the human electroencephalogram

that are typically not detectable until they are isolated by a

process of signal averaging. Owing to the extremely small
size of ERP components (ranging from less than 1 lV to

tens of lV), compared to background brain rhythms, sta-

tistical analyses of ERPs are predominantly carried out in
groups of subjects. This limitation is a barrier to the

translation of ERP-based neuroscience to applications such

as medical diagnostics. We show here that support vector
machines (SVMs) are a useful method to detect ERP

components in individual subjects with a small set of

electrodes and a small number of trials for a mismatch
negativity (MMN) ERP component. Such a reduced

experiment setup is important for clinical applications. One

hundred healthy individuals were presented with an audi-
tory pattern containing pattern-violating deviants to evoke

the MMN. Two-class SVMs were then trained to classify

averaged ERP waveforms in response to the standard tone
(tones that match the pattern) and deviant tone stimuli

(tones that violate the pattern). The influence of kernel
type, number of epochs, electrode selection, and temporal

window size in the averaged waveform were explored.

When using all electrodes, averages of all available epochs,
and a temporal window from 0 to 900-ms post-stimulus, a

linear SVM achieved 94.5 % accuracy. Further analyses

using SVMs trained with narrower, sliding temporal win-
dows confirmed the sensitivity of the SVM to data in the

latency range associated with the MMN.
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1 Introduction

Event-related potential (ERP) components are specific

deflections in the averaged waveform, which are consid-

ered to be tied to discrete stages of neural processing. They
are extracted from trials or epochs of electroencephalo-

gram (EEG) data that are temporally locked to a repeated
event, either a stimulus or a behavioural response, which

are segmented from the continuous EEG recording and

then averaged together. This averaging process reduces the
amplitude of brain activity that is unrelated to the event,

thus presumed to be random with respect to it in time, and

retains brain responses that are temporally related to the
event (see [1] for a full description of ERP derivation). The

most commonly used definition of an ERP component was

outlined by Näätänen and Picton in 1987 [2]. Their defi-
nition emphasizes that an ERP component is described not

only by the brain regions that contribute to its production,

but also by the experimental parameters which must be
satisfied in order to observe the response. ERPs can be
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evoked by stimulation in any sensory modality and can also

occur in response to motoric and cognitive events.
In the auditory domain, ERPs can be used to index

processing all the way from early sensory processing in the

brainstem to cortical language processing. The auditory
brainstem response (ABR) has a long history of use in both

neurology and audiology [3]. Cortical ERPs have yet to

become a routine part of clinical practice, even in audiol-
ogy (reviewed in [4]) and cognitive assessment of higher

functions like language [5–7] where their potential utility is
very clear.

In large part, the failure of cortical ERPs to be translated

into clinical practice is due to the requirements of the
signal-averaging process. Many repetitions of the evoking

stimulus or event must be presented in order to isolate

ERPs, which can lead to long testing times. Another
important consideration for the application of ERPs for

both clinical and research purposes is the need to statisti-

cally verify the presence of the response. Given the low
signal-to-noise ratio of these responses versus background

EEG, the typical approach in ERP research is to perform

univariate statistics across groups, or across experimental
conditions, using amplitudes that are measured in the

averaged waveform [8].

Many groups have proposed solutions to verify the
presence of ERPs in individual subjects, and even single

epochs, by applying techniques such as wavelet analysis

[9–11], independent component analysis [12], integrated
waveforms [13], and nonparametric analyses [14]. In some

very specific clinical situations, the approach of repeating

stimulation until a statistical threshold is reached [15], or
using basic t-scores to evaluate the presence or the absence

of a particular component [16, 17], has been examined.

In particular, the field of Brain–Machine Interfaces
(BMIs) has yielded much progress in the single-subject

detection of responses like ERPs. This area seeks to use

brain imaging data, mostly noninvasive technology, such
as EEG, to identify brain waves in continuous EEG

recordings that can be interpreted as commands by a

computer [18]. The progress that has been seen in this area
is mainly due to advances in machine learning techniques.

While results in BMI research show that signals can be

extracted from single trials, here we investigate specifically
the use of machine learning techniques for the detection of

ERPs in individual subjects for the purpose of clinical

evaluations. Support vector machines (SVMs) are evalu-
ated for their applicability as part of the protocol known as

the Halifax Consciousness Scanner [19]. Our approach is

hence mediating between a classical clinical approach and
methods of BMIs.

The SVMs are a form of supervised statistical machine

learning (for a primer, see [20]) and were first described by
Vapnik and colleagues in 1992 [21]. When classified cases

are used to train an SVM, it derives an optimal function

based on the features that separate the two classes. Unlike
other statistical classification methods, such as discriminant

function analysis and linear regression, SVMs derive their

decision function from only a subset of the data—the cases
that are difficult to classify. These cases are referred to as

support vectors. The goal of an SVM is to maximize the

distance between the decision function’s boundary and the
support vectors. They can operate in either a linear or a

nonlinear fashion and are notable among machine learning
techniques in view of their ability to produce generalizable

models from small datasets [22].

The SVMs have demonstrated very high accuracy for
discriminating between experimental conditions [23], and

moderately high accuracy for the prediction of clinical

group membership [8] based on ERP features. The present
work arose from the development of a novel method for

evaluating brain function using ERPs, known as the Hali-

fax Consciousness Scanner (HCS; described in [19]). The
initial intent of the HCS is for applications in brain-injured

populations. This context presents very different challenges

from BMIs because patients may be unable to comply with
task instructions [24]. It therefore uses stimulation

parameters that do not require effortful task completion.

This approach is also beneficial for clinical populations that
may seek to influence their test results to conceal, augment,

or even fake an injury [25]. Yet another important feature

that distinguishes clinical applications from typical SVM
applications in BMIs is the need for rapid ERP detection,

without any kind of training period for the classifier. For

this reason, we apply SVM training across subjects, rather
than in the within-subject fashion that is typical for BMIs.

To evaluate the ability of an SVM to verify ERPs in

individual subjects, the present study uses an ERP known
as the mismatch negativity (MMN). First discovered by

Näätänen and colleagues in 1978, the auditory MMN is an

ERP that indexes the detection of change in a sequence of
sounds [26]. The MMN is linked to a level of auditory

memory that is believed to form the basis of conscious

perception [27], and is an important part of the HCS
method [19], particularly due to its well-established utility

for coma monitoring [15, 28–32]. Owing to its small size,

the MMN presents a challenge for detection at the indi-
vidual subject level.

The MMN is commonly evoked using an experimental

design known as an oddball paradigm. Although it is well
understood that the oddball paradigm frequently causes an

undesirable overlap of other ERPs with the MMN [33], it

provides a simple framework for understanding how the
MMN is obtained. In the oddball paradigm, a sequence of

identical ‘‘standard’’ stimuli is interrupted at random and

unpredictable times by ‘‘deviant’’ stimuli that possess some
changed features, such as tonal frequency, intensity, or
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duration. The MMN is observed as an enhancement in

negative voltage that occurs approximately 100–250 ms
from deviant stimulus onset. It rests atop other ERP com-

ponents that are associated with sensory processing, such

as the ‘‘obligatory’’ P1–N1–P2 complex, and is isolated
from these responses through a process of subtraction in

which the averaged waveform to the standard stimuli is

subtracted point-by-point from the averaged waveform to
the deviant stimuli. This produces the so-called ‘‘difference

wave,’’ in which the MMN appears as a negative deflection
in the 100–250 ms range. Although the amplitude of the

MMN can be enhanced by experimental parameters such as

reducing the silent period between stimuli (the interstim-
ulus interval, or ISI), or increasing the difference between

the standard and deviant tones [34], it is often quite small

in amplitude, being around 1 lV.
The MMN is not restricted to simple oddball deviance

and can also be evoked by more complex violations of

concrete or abstract rules [35]. Under these circumstances,
a pure MMN should be obtained, which is free of overlap

from other ERP components. In the present study, the

MMN is evoked in response to violations of a simple
pattern of two alternating tones. Two types of SVM anal-

yses are performed: one to achieve high classification

accuracy (SVMacc), and the other to help one clarify
whether the waveform features that are associated with the

MMN are indeed used by the SVM (SVMtime). The SVMacc

analysis explores a variety of factors which could impact
classifier accuracy: number of epochs entered into the

averaged waveforms, scalp electrode selection, kernel type,

and temporal window selection.
It is generally accepted that, as the number of epochs

entered into the ERP waveform increases, the SNR of the

ERP improves versus background EEG [1]. For the MMN,
the number of epochs that is generally recommended for

averaging is at least 150 [36], although robust MMNs have

been observed with approximately 60 [34]. For this reason,
the first SVM analysis explores the influence of number of

epochs entered into the average on the accuracy of the

classifier.
The typical scalp distribution for the MMN is maximal

at frontal sites, and inverted at sites below the Sylvian

fissure when a nose reference is used. This distribution has
been attributed to bilateral, vertically oriented cortical

generators on the supratemporal plane, as well as a frontal

source [37]. Thus, a classifier that is limited to frontal sites
might achieve the highest performance. However, for

clinical populations such as patients with acquired brain

injuries, atypical scalp distributions are expected [38]. For
this reason, the value of using scalp electrode sites sepa-

rately, or combined, is evaluated.

The so-called kernel trick permits SVMs to operate in a
nonlinear fashion by projecting low-dimensional data into

higher-dimensional space [20]. This may provide a better

fit to complex datasets, but this improved accuracy may
come at the cost of overfitting—a lack of generalizability

of the results to new datasets [20]. For this reason, a linear

classifier may be preferable, but the values of different
kernel types are examined to determine whether significant

improvements in performance can be achieved over the

linear solution.
The MMN is expected to occur approximately 100–250 ms

from stimulus onset [36]; however, other information in the
ERP waveforms may be useful for classification. The portion

of the waveform that is entered into the feature vectors is

therefore varied, to determine what temporal window produces
the maximum performance. A difficulty in the interpretation of

SVMs, however, is that they derive their rules using a complex

combination of factors. Any waveform features that are within
the selected temporal window, be they part of the MMN or not,

can contribute to the decision function. Thus, the SVMtime

analysis is performed, not to achieve high accuracy, but to
provide finer detail regarding which temporal regions of the

waveforms contain detectable information for classification.

2 Method

2.1 Subjects

One hundred healthy adult volunteers (57 females, aged
19–73, mean = 32.5 years) with no history of neurological

problems, hearing problems, or psychoactive medications

participated in the study. The study was carried out
according to the Canadian Tri-Council guidelines (Health,

Natural, and Social Sciences) on ethical conduct for

research involving humans.

2.2 The stimulus sequence

A segment of the tone sequence is illustrated in Fig. 1. This

sequence was developed to evoke several ERPs for clinical

applications such as brain injury [19]. It is composed of
two spectrally rich tones (A and B) that consist of funda-

mental frequencies (740 and 1,046.5 Hz, respectively) with

the 1st and the 2nd harmonics presented at exponentially
decreasing levels (e-1 and e-2, respectively). These tones

had durations of 100 ms, including a 5-ms total rise/fall

time, and were delivered with an onset-to-onset interstim-
ulus interval of 265 ms. The ‘‘standard’’ tones of the

sequence were presented in an alternating pattern (ABA-

BAB…) with an intensity of 75 dB SPL. Two types of
deviant stimuli occurred infrequently within this standard

pattern: repetition deviants (repetitions of either the A or

the B tone, e.g., ABABBBA) and intensity deviants, both
of which occurred with type A and type B fundamental
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frequencies. The sequential probabilities of repetition

deviant and intensity deviant stimuli were 0.11 and 0.063,

respectively. Tones were delivered in a fixed order in
which consecutive deviant stimuli (regardless of type) were

separated by at least two standard tones. In total, the tone

sequence consisted of 601 stimuli, consisting of 496 stan-
dard tones, 67 pattern deviants (e.g., ABABBBA), and 38

intensity deviants, and lasted for 2.5 min.

2.3 Data acquisition and analysis

During sound presentation and EEG recording, subjects sat
in a dimly lit room and watched a silent video with no

subtitles. Subjects were asked to ignore all auditory stim-

ulation and focus on the video. The EEG was recorded
using a portable acquisition system consisting of a Gmo-

biLab ? 8 channel amplifier (g.tec Medical Engineering,
GmbH), a custom-built triggering card, and a netbook. This

configuration produced a small deflection in the EEG trace

that was used to confirm the timing of stimulus delivery.
Tin electrodes were placed at three scalp sites, including a

Central site (at Cz), a Frontal site 5.8 cm anterior to Cz,

and a Parietal site 5.5 cm posterior to Cz. Assuming a
distance of 35 cm between the nasion and inion, these

Frontal and Parietal sites would lie approximately halfway

between Fz and FCz, and Pz and CPz, respectively,
according to the extended 10–20 system. Additional elec-

trodes were placed at the right mastoid and on the tip of the

nose. This configuration of a portable EEG system with a
reduced electrode montage was optimized for point-of-care

clinical applications [19]. The vertical and horizontal EOG

were recorded from two electrodes positioned on the supra-
orbital ridge and outer canthus of the left eye, respectively.

All sites were referenced to the left earlobe, and all

impedances were below 5 kX. The EEG and EOG signals
were sampled at a rate of 256 Hz, with a bandpass of

0.1–100 Hz, and stored for offline analyses.

Offline, these data were low-pass filtered at 20 Hz and

notch filtered at 60 Hz. Signals were re-referenced to the

nose, and eye movement and blink artifacts were cor-
rected using a regression method [39]. The continuous

EEG was then segmented into discrete 1,000-ms epochs,

including a 100-ms prestimulus period, and any epochs
containing values exceeding ±75 lV were considered to

contain artifacts and were rejected from further analysis.

For the ERP analysis, all epochs were averaged, and
baseline corrected using the 100-ms prestimulus baseline.

For greater detail regarding these standard ERP-process-

ing steps, the interested reader is referred to [1]. In
accordance with standard procedures for MMN analysis

(e.g., [40]), the first four standard tones of the sequence,

and the first 2–3 standards following every deviant were
omitted from averaging. One participant’s mastoid elec-

trode became disconnected during the session; therefore
the mastoid data from this subject were excluded from the

grand average.

Averaging for the SVM analysis that explored the
impact of the number of epochs on accuracy was per-

formed using 2–40 epochs for each stimulus type. An upper

limit of 40 epochs was selected as this was the lowest
number of deviant epochs available per subject in the

100-subject dataset. The data used for the SVM analysis

did not receive baseline correction.
Similar to other research using two-tone alternating

patterns [34, 40], standard and repetition deviant stimuli

were averaged across tonal frequency stimulus types (e.g.,
all standard tones, regardless of whether they were low

(A) or high (B) tones, were averaged together). The mean

number of epochs accepted for averaging for each of these
stimulus types was 214 for standard tone epochs and 66 for

repetition deviant epochs. Data from the intensity deviant

epochs, which evoke much larger ERPs and therefore do
not test the sensitivity of the SVM approach, are not pre-

sented here.

Fig. 1 An illustration of a segment of the 2.5-min tone sequence.
Gray boxes are ‘‘standards’’ that conform to the pattern. Type A and
type B tones have fundamental frequencies of 740 and 1,046.5 Hz,
respectively. The open box is a repetition deviant stimulus. The

thicker, black box, is an intensity deviant. Both repetition deviants
and intensity deviants can have either a type A or type B fundamental
frequency
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2.4 ERP scoring

The mean amplitude of the MMN was measured in a ±10-
ms period surrounding its peak in each subject’s repetition

deviant minus standard difference wave. All amplitudes

were measured versus baseline.

2.5 Group level statistical analysis

The MMN was tested for significance at the group level

using a repeated-measures ANOVA with the factors elec-

trode site (Frontal, Central, and Parietal) and stimulus type
(repetition deviant and standard). Greenhouse–Geisser

corrections were applied for all violations of the assump-

tion of sphericity.

2.6 SVM analysis for wave classification: SVMacc

2.6.1 Pre-processing

Feature vectors for SVM training consisted of two types of
waveforms: separate ERPs for each scalp site, and a vector

in which the data from the three scalp sites were appended

in a Frontal to Parietal order (referred to as all sites). For
the exploration of temporal window size, data from a

prescribed temporal window within the averaged ERP

waveform were used. These windows always began at
stimulus onset (t = 0 ms), and varied from 20 to 900 ms in

width in 20-ms steps. The features in each vector were

EEG samples (sampled at 256 Hz), therefore the number of
features in each vector varied as a function of the size of

the temporal window, and the number of electrode sites

included in the vector. Illustrations of the types of feature
vectors that were entered into the SVM analysis are pro-

vided in Fig. 2.

2.6.2 SVM training

Supervised learning was performed by 10-fold cross-vali-
dation over 100 datasets (i.e., 100 subjects) to predict the fit

of the model to a hypothetical validation set. In explicit

terms, this means that in each fold, the SVM was trained on
90 subjects, and tested on 10 entirely different subjects that

were held out.

First, to explore the value of the number of epochs that
are entered into the average using a simple model, first,

linear SVMs were trained with waveforms containing data

from all sites. Different numbers of epochs were entered
into the average (i.e., one standard tone epoch and one

deviant tone epoch, or averaged standard and deviant
waveforms consisting of 2, 3,…,40 epochs). In separate

analyses, these epochs were either randomly selected from

amongst the available set of epochs, or selected in serial
order. As described in Sect. 2.3, the maximum number of

epochs entered into these averages was 40 due to the fact

that this was the lower limit of available deviant epochs
within the 100 subject dataset.

Following the determination that SVM accuracy

increased as the number of epochs entered into the average
increased, averaged waveforms consisting of all available

epochs were used as feature vectors to determine the
influence of kernel type, temporal window size, and elec-

trode selection. A series of SVM analyses were performed

that included three factors: kernel type (linear, radial basis
function [RBF], polynomial-cubic, and polynomial-qua-

dratic), window size (between 100 and 900 ms in 20-ms

steps, beginning at stimulus onset), and all electrode sites.
All default values were retained for the different SVM

kernels (e.g., linear SVM soft margin box constraint C was

left at 1, and radial basis function scaling factor r = 1 was
retained).

The final SVMacc solution that provided the best per-

formance was finally evaluated using a standard permuta-
tion analysis, as described in the introduction of [41]. The

analysis was carried out with 1,000 permutations. The

SVM implementation used for this study was the built-in
SVM toolbox in Matlab 2012b (MathWorks Inc., 2012).

Autoscaling was enabled, which normalizes all input data

vectors to have unit standard deviation and centers them
around their mean.

2.7 SVM analysis to confirm MMN sensitivity:
SVMtime

2.7.1 Pre-processing

Averaged waveforms from all sites were used for the

SVMtime analysis. Within this waveform, a 5 sample
(approximately 20-ms) temporal window was defined,

which slid by 5 sample steps across the entire 900 ms post-

stimulus epoch.

2.7.2 SVM training

Linear kernel SVMs were trained to distinguish between

pattern deviant and standard tone averaged waveforms (all

available epochs) using data from each 20-ms sliding
window, to a total of 46 windows/SVMs. As in the SVMacc

analysis, 10-fold cross validation was used across the 100

subjects. Again, the SVM implementation used for this
study was the built-in SVM toolbox in Matlab 2012b

(MathWorks Inc., 2012) with autoscaling enabled and the

soft margin box constraint set to the default of 1.
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3 Results

3.1 Group level ERP analysis

Grand average waveforms for standard and deviant tones,

as well as the deviant minus standard difference waves, are

shown in Fig. 3. In the repetition deviant waveform, N1
was followed by an additional negativity that was maximal

at the Frontal site and reversed in polarity at the mastoid.

This is the MMN, which is isolated in the deviant minus
standard difference wave. The average peak latency of the

MMN was 193.0 ms from stimulus onset. The ANOVA for

the MMN demonstrated a significant effect of stimulus
type [F(1,99) = 97.7, p \ 0.001, gpartial

2 = 0.50] in which

the mean amplitude at the latency of the MMN was more

negative for repetition deviant than standard stimuli, thus, a
significant MMN was evoked. There was also a significant

effect of electrode site [F(2,198) = 21.2, e = 0.63, adj.
p \ 0.001, gpartial

2 = 0.18], in which amplitudes were more

negative at the Frontal site and the Central site than at the

Parietal site. These main effects were qualified by an

interaction [F(2,198) = 42.1, e = 0.70, adj. p \ 0.001,
gpartial

2 = 0.30] in which the MMN amplitude in the repe-

tition deviant waveforms was larger at the Frontal site than

the Parietal site, but not the Central site. The mean
amplitude of the MMN, measured at the Frontal site in the

deviant minus standard difference wave, was -1.87 lV

(s.d. = 1.50 lV).

3.2 SVMacc analysis

As can be seen in Fig. 4, the accuracy of the linear SVM

increased as a function of the number of epochs entered

into the average using both randomly and serially selected
epochs. However, accuracy rose much more sharply as a

function of number of epochs for the serially than ran-

domly selected condition. In a similar vein, the maximum
accuracy that was achieved for serially selected epochs
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Fig. 2 An illustration of averaged waveforms and feature vectors for
a single subject. The upper panel shows standard tone averaged
waveforms at the three scalp sites (Frontal, Central, and Parietal)
using all available epochs. All amplitudes are in microvolts and all
time values are in milliseconds (horizontal axes). The end of a 500-ms
temporal window is delimited by a gray dashed line. The middle
upper panel demonstrates how the data from that temporal window

are used to create Frontal, Central, Parietal, and all scalp sites feature
vectors for the standard ERP class. The lower middle panel shows
pattern deviant averaged waveforms. Again, a 500-ms temporal
window is delimited, and the composition of the Frontal, Central,
Parietal, and all scalp sites feature vectors are shown, now for the
deviant ERP class, in the bottom panel
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(78.13 %, SD = 0.02 %) was substantially higher than that

which was obtained using randomly selected epochs
(65 %, SD = 0.43 %). Based on these results, further SVM

analyses were performed on averages of all available

epochs.
The results of varying kernel type, window size, and

electrode selection are presented in Figs. 5 and 6. Figure 5

demonstrates the effect of kernel type and window size for a
feature vector that contains all scalp electrodes. At window

sizes below 180 ms, the quadratic kernel provided maximum

accuracy, and was significantly better than cubic or linear
kernels. At a window size of 200 ms, however, the linear

classifier rose above all other classifier types, and performed
significantly better than RBF or cubic classifiers. Unlike

other kernel types, the accuracy of the linear SVM rose

systematically as window size increased. Beginning with a
700-ms temporal window, the linear SVM provided signif-

icantly better performance than any other kernel type, and

reached a maximum accuracy of 94.5 % (SD = 0.064 %)
when the full post-stimulus epoch (900 ms) was used.

Figure 6 demonstrates the effect of electrode selection

on a linear SVM, along with the effect of temporal window
size. As in Fig. 5, it can be seen that classifier accuracy

significantly improved when the temporal window reached

at least 200 ms in width. Increasing the window width
systematically improved classifier accuracy for SVMs

trained at any site, but at the largest window size, the

Frontal site, Central site, and the feature vector containing
data from all sites produced significantly better perfor-

mance than the Parietal site. Nearly equal performance was

obtained for the Frontal site (93 %, SD = 0.048 %),
Central site (92 %, SD = 0.063 %), and all sites (94.5 %,

SD = 0.064 %).

The error of the final SVMacc solution (linear SVM,
temporal window 0–900 ms, all sites) was evaluated using

a permutation analysis [41], the results of which are shown

in Fig. 7. The p value for the accuracy of the true SVM
solution was 0.001, and was outside the 96 % confidence

interval of the accuracies that were observed with ran-

domly assigned feature vectors.

3.3 SVMtime analysis

Accuracies within each of the nonoverlapping temporal

windows are depicted in Fig. 8, and ranged from a mini-

mum of 45.5 % (SD = 0.09 %) to a maximum of 86.5 %
(SD = 0.01 %). The highest accuracies were observed in

the 160–260-ms and 720–820-ms periods.

4 Discussion

The tone sequence evoked a moderate-sized, frontally

maximal MMN component that inverted in polarity at the

mastoid site. This scalp distribution, though observed on a
reduced array of sensors, conforms with the classic
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Fig. 3 Grand average waveforms for standard tones (black), repeti-
tion deviants (gray), and the deviant minus standard difference wave
(dotted). All amplitudes are in microvolts and all time values are in
milliseconds. A sharp hardware-related deflection was observed at
stimulus onsets (i.e., at 0 ms and every 265 ms thereafter). The MMN
is indicated at the Frontal and Mastoid sites by an arrow. In the
standard stimulus waveforms, obligatory auditory responses including
P1, N1, and P2 were apparent. Because of the rapid rate of stimulus
delivery, these took on the appearance of a steady state response
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morphology of the MMN and is identical to that observed
using similar pattern paradigms [40]. The SVMacc analysis

demonstrated that standard tone waveforms and deviant

tone waveforms could be classified with 94.5 % accuracy
(as shown in Fig. 6 for the all sites feature vector at win-

dow size 900 ms). These results bode well for the use of

SVMs to detect ERPs for clinical applications, such as the
ERP test battery approach that has been developed by our

group, known as the Halifax Consciousness Scanner

(described in [19], and a companion paper, [14].

The performance of the SVM classifier was affected by
a number of factors. First, the number of epochs used in the

standard and deviant tone averaged waveforms was

explored using a linear SVM. The accuracy of the classifier
increased directly as a function of the number of epochs

entered into the average. This result is entirely consistent

with the general belief that the averaging process increases
the SNRs of ERPs [1]. There was a consistent trend in

which accuracy increased as the number of epochs entered

into the average was increased from 2 to 40. The effect of
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SVM as a function of the
number of standard and deviant
tone epochs entered into the
average (using all scalp sites).
Accuracy increased as the
number of epochs entered into
the average was increased from
2 to 40, but increased much
more steeply in the serial- than
the random-selection condition,
and reached a higher maximum
when 40 epochs were used
(78.13 %, SD = 0.02 % for
serial selection, versus 65 %,
SD = 0.043 % for random
selection). Error bars indicate
standard deviation
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Fig. 5 Effects of SVM kernel type and temporal window size for a
feature vector that contains all three scalp electrodes (average of all
available epochs). At window sizes below 180 ms, the quadratic
kernel (dashed line with square) provided maximum accuracy, and
was significantly better than other kernels. At a window size of
200 ms, however, the linear classifier (solid line with circle) rose

above all other classifier types. Beginning at the 700-ms temporal
window, the linear SVM provided significantly better performance
than any other kernel type, and reached a maximum accuracy of
94.5 % (SD = 0.064 %) when the full post-stimulus epoch (900 ms)
was used. For clarity, select error bars are displayed around 180, 200,
700, and 900-ms window sizes. Error bars indicate standard deviation
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number of epochs on the accuracy of the SVM was much

more dramatic for serially than randomly selected epochs,

and achieved a higher accuracy when using 40 epochs in
the serial condition. These results suggest that sequential

effects that emerge over the stimulation protocol may have

contributed to the accuracy of the classifier.

The effect of averaging up to 67 epochs (the full

available set) could not be explored across the group, due

to the availability of less than 67 deviant epochs in some
subjects as a result of artifact rejection. Nevertheless, the

full set of available epochs was used for each subject in the

final SVM solution, which achieved an accuracy of 94.5 %.
Although the recommended number of epochs for MMN

derivation is 150, with a typical recording time of

6–12 min [36], the very high accuracy that was observed
here with only 67 deviants, presented in an optimized

2.5-min sequence, is promising for clinical applications.

While optimal recording conditions may be difficult to
achieve, particularly in a clinical environment, the rela-

tively small amount of data required for classification using

this method represents a significant reduction in testing
time versus conventional stimulation parameters. Short

testing times are necessary in a clinical context because

they interfere minimally with routine care procedures and
avoid fluctuations in vigilance, attention, and fatigue which

can cause false negatives on ERP-based tests [42].

Other factors that influenced SVM accuracy were the
type of kernel (linear, RBF, cubic, or quadratic), the tem-

poral window used, and the electrode site used. When all

kernel types were explored across different temporal win-
dows, using a feature vector with data from all sites, the

linear SVM clearly outperformed other kernel types. This

effect was particularly noticeable as the temporal window
size approached 200 ms—the period in which the MMN

begins to emerge. At the maximum window size, 900 ms,
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Fig. 6 Effects of electrode selection and temporal window size on a
linear SVM trained with feature vectors that contain all three scalp
electrodes (average of all available epochs). As in Fig. 5, increasing
the window width systematically improved classifier accuracy. At the
largest window size, the Frontal site (dotted line with diamond),
Central site (dashed line with square), and the feature vector

containing data from all sites (solid line with circle) produced
significantly better performance than the Parietal site (dash-dotted
line with triangle). Nearly equal performance was obtained for the
Frontal site, Central site, and all sites. For clarity, select error bars are
displayed around 200, 500, and 900-ms window sizes. Error bars
indicate standard deviation
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Fig. 7 Box and whisker plot for the null distribution produced by the
permutation test for the final SVMacc solution (linear SVM, average
of all available epochs, all sites, temporal window 0–900 ms). The
center of the box is the median of the distribution. Box limits are the
25th and 75th percentiles, while the whiskers extend to the 2nd and
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Accuracies that are observed in the null distribution, which exceed
these limits are indicated by red cross marks. The observed accuracy
of the true SVM solution (mean error = 5.5 %) is indicated by a blue
ellipse. (Color figure online)
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the linear SVM performed significantly better than all other

kernel types, particularly the RBF, which never rose above

59 %. It remains possible that optimizing the parameters of
each SVM kernel type could improve performance for the

nonlinear classifiers. More complex kernel types, however,

can lead to overfitting, and a lack of generalizability [20].
For this reason, the effect of parameter optimization was

not explored for the nonlinear classifiers.

The electrode site that was entered into the feature
vector also had a significant impact on the accuracy of the

classifier. In line with the known scalp distribution of the

MMN [37], feature vectors from the Frontal and Central
site produced significantly better results than ones from the

Parietal site. Similarly, feature vectors containing data

from all three scalp sites produced very high performance,
which was not significantly different from the classifiers

that were trained exclusively with data from the Frontal

and Central sites. This approach may be preferable in
clinical populations whose scalp distributions can vary

from that typically observed in healthy individuals.

For the linear SVM, increasing the width of the temporal
window entered into the feature vector had a direct impact

on the accuracy of the classifier, in which increasing the

width of the window systematically improved perfor-
mance. The most dramatic improvement in accuracy

occurred around 200 ms, near the peak of the MMN in the

grand average (193 ms). Maximum accuracy was observed
when the full post-stimulus epoch was utilized (900 ms).

One drawback of SVMs for classification, as opposed

to other statistical classifiers like discriminant function
analysis, is that their decision functions use complex

combinations of information that can make their inter-

pretation difficult. Thus, it is unknown which ERPs or
brain oscillations that lie in the employed temporal win-

dow are contributing to the performance of the classifier.

To gain insight into the waveform features that contribute

most to classification accuracy, a secondary analysis

(SVMtime) was performed. Of the 46 SVMs trained in
nonoverlapping 20-ms (5 sample) windows, those in the

160–260 and 720–820 ms range achieved the highest

accuracy (first period maximum = 86.5 %, SD = 0.1 %,
second period maximum = 83.5 %, SD = 0.058 %). The

first period corresponds well with the expected latency of

the MMN to the pattern deviant, which peaked on average
at 193 ms. The second period corresponds with a region

of positivity in the deviant tone response, which could

reflect a P3-type response. While both MMN and P3
indicate that deviance detection has occurred, P3 is linked

to subsequent cognitive operations like attention switching

and working memory updating [43]. Regardless of the
true component structure of this positive response, it is

clear that a classifier which uses this portion of the

waveform does not detect the MMN per se, but rather
uses a larger variety of waveform features to perform the

task of classifying waveforms associated with deviance

detection.
In conclusion, linear SVMs proved to be effective at

classifying the MMN. This method could be extremely

valuable for clinical applications of the MMN, and other
ERPs, by both reducing testing time versus conventional

stimulation parameters and permitting the application of

ERPs at the single subject level. Among the potential
applications for the MMN is monitoring the status of

severely brain-injured patients [15, 19, 28, 32]. Further

development for use in this patient population may require
additional testing to determine efficacy in the context of the

severely altered EEG patterns that are commonly observed

in this group [38]. Results must also be interpreted with
care when applied in the absence of more concrete indi-

cators of neurological status [44–47].
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