
CSCI	1106	
Lecture	22	

Robo2cs	Review	

What	is	Robo2cs	
•  From	the	OED:	

“Robo$cs:	The	area	or	science	of	design,	construc2on,	
opera2on,	and	applica2on	of	robo2cs	and	the	like;	the	study	
of	robots.”	

•  	Anatomy	of	a	Robot	
–  Hardware	Components:	

•  Sensors	
•  Control	
•  Actuators		

–  SoPware	Components:	
•  Sensor	Input	Processing	
•  Decision	Making	
•  Actuator	Manipula2on	and	Output		

Event	Driven	Framework	
(Wait)	Sense	(Event)-Decide-Act	

Sense	

Decide	Act	

Sensors	
•  A	sensor	senses	a	property	in	its	environment		

–  Input:	Analog	
–  Output:	Discrete	

•  Have	a	variety	of	characteris2cs	
–  Sensi$vity	:	minimum	change	of	input	that	results	in	change	in	output		
–  Range	:	the	minimum	and	maximum	inputs	that	a	sensor	can	handle	
–  Response	:	the	output	of	sensor	for	a	given	input	
–  Response	Time	:	how	quickly	the	sensor	can	change	state	as	a	result	of	

a	change	of	input	
–  Precision	:	degree	of	reproducibility	of	the	measurement	
–  Accuracy	:	maximum	difference	between	the	true	and	measured	value	
–  Bias	:	the	systemic	error	of	the	sensor	
–  Variability	:	the	random	devia2on	from	the	true	value	

42 37 61

sensor

Sensors	are	Imperfect	

•  Sensors	have	two	kinds	of	errors	
•  Key	Ideas:	

– No	ma[er	how	good	a	sensor	is,	it	is	imperfect	
–  Imperfect	sensors	introduce	uncertainty	

•  Bias	
•  Variability	

– Need	to	quan2fy	the	uncertainty	
– Need	to	quan2fy	a	sensor’s	characteris2cs	

•  Can	characterize	sensors	through	a	standard	
process	

How	to	Characterize	a	Sensor	
1.  Iden2fy	the	sensor	we	want	to	characterize	
2.  Iden2fy	the	sensor	characteris2c	we	want	to	measure	
3.  Iden2fy	the	possible	variables	of	the	characteris2c	
4.  Fix	all	but	one	of	the	variables	
5.  Create	a	sequence	of	known	``actual’’	values	where	the	

–  One	variable	is	varied	and	
–  All	other	variables	are	fixed	

6.  Perform	a	sequence	of	measurements	(mul$ple	$mes)	on	
the	``actual’’	values	

7.  Tabulate	the	results	and	compute	means	
8.  Plot	the	results	
9.  Repeat	steps	4	–	8,	allowing	a	different	variable	to	vary	

each	2me	
10.  Analyze	the	plot(s)	to	derive	the	sensor’s	characteris2cs		

Making	Use	of	the	Results	
•  General	observa2on(s)	

–  Response	decreases	as	distance	increases	
–  Useful	for	visual	interpola2on	

•  Create	a	linear	model	
–  Draw	a	linear	approxima2on	
–  Compute	slope	(m)	and	intercept	(b)	of	the	line	
–  Plug	into	equa2on	of	a	line	

•  Then	what?	

(9,1000)	

(2,3800)	

m =
rise
run

=
y2 − y1
x2 − x1

=
1000−3800

9− 2
≅ −400

b = 4600

y =mx + b y = −400x + 4600

2600	

(0,4600)	 bbmxy +×−=⇒+= 24003800
3800,2 == yx

Using	Sensors	

•  Key	Ideas:	
–  A	sensor	will	not	inform	your	program	when	a	property	
has	changed		

–  The	program	must	poll	the	sensor	repeatedly	to	detect	
change	

•  A	program	
–  Polls	the	sensor	to	get	its	current	value	
–  Interprets	the	value	(compares	it	to	a	threshold)	

•  Defn:	A	threshold	is	a	fixed	constant	such	that	an	event	
is	triggered	when	a	measurement	from	a	sensor	
returns	a	value	that	is	above	(or	below)	the	constant		

Sampling	

•  Polling	Frequency	depends	on	
– The	response	2me	of	the	sensor	
– The	rate	at	which	the	environment	changes	

•  The	sampling	rate	is	the	frequency	of	the	polls	
•  A	higher	rate	means	we	are		

– Less	likely	to	miss	a	change	in	inputs	
– Using	more	CPU	2me	to	poll	the	sensor	

42 37 61

sensor

Sensor	Variability	

•  Problem:	All	sensors	have	some	variability	
– The	measured	value	randomly	deviates	from	the	
true	value	

– A	sensor	may	report	different	values	for	the	same	
true	value	

•  Solu2on:	
– Take	mul2ple	measurements	
– Aggregate	(mean,	median,	mode)	the	results	

Actuators	
•  Actuators	allow	the	robot	to	affect	the	world	
•  Actuators	are	characterized	by	their	parameters	and	
tolerances:	
–  Torque,	force,	and	pressure	
–  Speed,	power,	and	strength	
–  Accuracy	and	precision	

•  Two	kinds	of	uses	
–  Synchronous	use:	

•  Start	opera2on	
•  Wait	un2l	the	opera2on	completes	
•  Con2nue	program	

–  Asynchronous	use:	
•  Start	opera2on	
•  Con2nue	program	
•  Use	sensors	or	poll	actuator	to	determine	opera2on	comple2on	

State	Transi2on	Diagrams	
•  Idea:	Use	state	transi2on	diagrams	to	model	

–  Steps	of	a	task	
–  Condi2ons	under	which	the	steps	are	performed	
–  Environment	of	the	robot	during	the	task	

•  Consists	of	states	and	transi2ons	
•  A	state	is	a	unique	set	of	condi2ons	that	hold	at	a	given	

2me	
–  System	can	only	be	in	one	state	at	a	2me	

•  A	state	transi$on	occurs	when	
–  An	event	occurs		

•  External	events	(sensor	input)	
•  Internal	events	(comple2on	of	a	task,	2mer)	

–  One	of	the	condi2ons	describing	the	state	changes	
–  The	state	of	the	system	changes	

State	Transi2on	Diagrams	

•  Idea:	We	use	a	state	transi2on	diagram	to	model	a	task	
•  States	are	represented	by	circles	
•  Arrows	represent	transi2ons	between	states	

run	
fwd	

run	
back	

car	&
	

far	

wait	 walk	2me?	 stop	

red/yellow	

start	 enough	

not	enough	

done	green	

•  If	light	is	red,	wait	for	light	
to	turn	green	

•  If	light	is	yellow,	wait	for	
light	to	turn	green	

•  If	light	is	green	but	there	is	
not	enough	2me,	wait	for	
light	to	turn	red	and	then	
green	

•  If	light	is	green	and	there	is	
enough	2me,	

–  Proceed	on	crosswalk	
–  If	a	car	is	speeding	at	you,	

get	out	of	the	way	
•  Stop	crossing	when	other	

side	is	reached	

Crea2ng	State	Transi2on	Diagrams	
•  Iden2fy	the	states	(steps)	of	a	task	

–  Determine	what	ac2ons	must	be	performed	
–  Determine	groups	of	unique	(relevant)	condi2ons	
–  Label	each	group	with	a	unique	name	

•  Iden2fy	state	to	state	transi2ons	
–  What	is	being	sensed?	
–  What	external	events	will	be	sensed?	
–  What	internal	events	will	occur?	
–  What	condi2ons	will	these	events	change?	
–  Determine	which	condi2ons	change?	
–  Determine	the	corresponding	states	in	the	transi2on	
–  Label	each	transi2on	with	a	unique	label	

•  Create	diagram	
–  Combine	states	and	transi2ons	
–  Refine	the	diagram	by	repea2ng	the	process	

•  This	diagram	is	a	blueprint	for	your	program!		

Z	

Y	

X	 a	

c	b	
d	

Transla2ng	State	Transi2on	Diagrams	

•  Problem:	
– We	design	our	solu2on	by	crea2ng	a	state	transi2on	
diagram	(STD)	

– We	need	to	translate	the	STD	into	a	program	
•  Idea:	Use	a	standard	process	

– Use	a	variable	to	encode	the	current	state	
–  Enumerate	all	states	as	constants	
–  Iden2fy	events	associated	with	each	transi2on	
– Gather	transi2on	informa2on	
–  Implement	event	handlers	to	perform	the	transi2ons	

Tracking	and	Enumera2ng	States	

•  Use	a	state	variable	
–  Stores	the	current	state	
–  Set	to	an	ini2al	state,	

e.g.,	STOPPED	

•  Enumerate	all	states	
–  Select	state	names	

e.g.,	STOPPED,	RIGHT,	LEFT	
– Number	consecu2vely	
– Add	states	as	constants	

•  Can	be	done	automa2cally	

var state = STOPPED!
!
motor.left.target = 0!
motor.right.target = 0!
!
onevent button.forward!
 state = RIGHT!
 !
onevent button.backward!
 state = STOPPED!
 motor.left.target = 0!
 motor.right.target = 0!
!
onevent prox!
 if state != STOPPED then !
 when prox.ground.delta[0] >= THRESHOLD do!
 state = RIGHT !
 motor.left.target = TARGET!
 motor.right.target = 0!
 end!
!
 when prox.ground.delta[0] < THRESHOLD do!
 state = LEFT!
 motor.left.target = 0!
 motor.right.target = TARGET!
 end !
 end!

Iden2fy	Events	
•  Iden2fy	the	events	associated	with	each	transi2on	

–  button.forward:	Forward	Bu[on	pressed	
–  prox:	horizontal	proximity	or	ground	proximity	sensors	
–  timer0	or	timer1:	2mer	has	expired	
–  tap:	robot	tapped	
–  etc	

•  Add	an	event	handler	for	each	event	
–  onevent button.forward!
–  onevent prox!
–  onevent timer0!

•  In	each	handler	implement	all	the	transi2ons	
associated	with	the	event	

Gather	Transi2on	Informa2on	
•  For	each	transi2on,	iden2fy	

–  States	(CONSTANTS)	
–  Event	(handler)	
–  Sensor/device	
–  Change	in	sensor/device	
–  Thresholds	(if	any)	
–  Ac2on	to	perform	

•  E.g.,	transi2on:	fwd	è	leP	
–  States:	

•  From:	fwd	(FORWARD)	
•  To:	leP	(LEFT)	

–  Event	(Handler):	prox!
–  Sensor:	prox.ground.delta[0]!
–  Change	in	sensor:	response	decreases	(dark)	
–  Threshold:	<	500	means	dark	
–  Turn	leP	

motor.left.target = 0!
Motor.right.target = 200!

•  Implement	the	transi2ons	in	their	event	handlers	

stop	 fwd	
back	bu[on	

leP	

right	

fwd	bu[on	

back	bu[on	

back	bu[on	

bl
ac
k	
lin
e	

no	line	

Implement	the	Transi2ons	
•  Inside	the	handler	use	template:	

if state == FROM_STATE and sensor has changed then!
 state = TO_STATE!
 perform action!
end	

•  E.g.,	transi2on:	fwd	è	leP	
onevent prox!
 if state == FORWARD and prox.ground.delta[0] < 500 then!
 state = LEFT!
 motor.left.target = 0!
 motor.right.target = 200!
 end!

stop	 fwd	
back	bu[on	

leP	

right	

fwd	bu[on	

back	bu[on	

back	bu[on	

bl
ac
k	
lin
e	

no	line	

if	vs	when!

if!

•  Form:	
if condition then!
 body!
end!

•  If	the	condi2on	is	true	
								the	body	is	executed	
•  E.g.,	if	we	see	a	stop	sign	

stop,	regardless	of	whether	
we	are	already	stopped	

when	
•  Form:	

when condition do!
 body!
end!

•  If	the	condi2on	is	true	now		
and	was	not	true	before,			
the	body	is	executed	

•  E.g.,	if	we	see	a	stop	sign	
and	we	are	not	stopped,	
then	stop	

Dealing	with	Failure	

•  Need	to	do	two	things	
–  Iden2fy	when	a	failure	has	occurred	
–  Respond	to	the	failure	

•  Failure	is	a	state	that	the	system	should	not	be	in	under	
normal	condi2ons		

•  Failure	cause	is	the	physical	or	func2onal	reason	for	the	
failure	

•  Failure	manifesta$on	is	the	detectable	effect	of	the	failure	
–  To	iden2fy	failure,	it	must	manifest	itself	in	a	detectable	way	

•  Obs:	We	can	only	deal	with	failures	that	we	can	foresee	

	

Things	don’t	always	go	as	planned…	

Failure	Iden2fica2on	
•  Idea:	We	can	iden2fy	that	a	failure	has	occurred	from	
its	manifesta2on	

•  To	iden2fy	a	failure,	we	need	to	
–  Determine	what	can	cause	the	failure	
–  How	the	failure	manifests	

•  When	designing	a	program	we	need	to	(a[empt)	to	
enumerate	all	relevant	failures	

•  Narrow	the	enumera2on	to:	
–  Failures	we	can	deal	with	
–  Failure	causes	we	understand	
–  Failure	manifesta2ons	we	can	iden2fy	

Mechanisms	for	Detec2ng	Failure	
•  Unexpected	external	events	

–  Sensors	register	an	unexpected	changes	in	environment	
•  Sensors	give	false	readings	
•  Sensors	give	true	readings	of	unexpected	condi2ons	

–  Actuators	report	status	errors	
•  Actuator	fails	to	perform	specified	task	
•  Actuator	reports	error	where	none	has	occurred	

•  Lack	of	expected	external	events	
–  A	2mer	expired	while	wai2ng	for	an	expected	event	

•  Sensor	fails	to	register	the	expected	event	
•  Expected	event	does	not	occur	

–  Actuators	fail	to	move	the	prescribed	amount	
•  Encounter	unexpected	resistance	

•  Unexpected	(or	lack	there	of)	internal	events	
–  Programs	run	code	they	are	not	supposed	to	(bugs)	

Failure	Response	and	Recovery	
•  Once	we	determine	that	a	failure	has	occurred,	
we	need	to	respond	to	it	

•  Response	mechanisms	are	parts	of	the	program	
that	respond	to	the	failure	

•  Two	op2ons:	
–  Place	system	in	a	safe	state	(shut	down)	
–  Recover	from	the	failure	

•  A	recovery	mechanism	returns	the	system	to	a	
normal	state	

•  Recovery	mechanisms	are	specific	to	each	failure	

Modeling	Failure	Recovery	

•  Idea:	Use	state	transi2on	diagrams	to	model	
failure	iden2fica2on,	response,	and	recovery	

right	 leP	
start	

light	

dark	

2m
er
	

lost	 found	

2m
er
	

dark	

	Strategy	and	Tac2cs	
•  How	are	we	going	to	solve	the	problem?	

–  Typically	there	is	more	than	one	way	
–  Can	be	described	in	a	couple	sentences	
–  Use	one	strategy	per	problem	

•  A	strategy	is	implemented	with	tac$cs	
–  Tasks	
–  Ideas	
–  Concepts	

•  Each	part	of	the	strategy	is	implemented	with	one	or	
more	tac2cs	
–  Tac2cs	may	be	composed	of	mul2ple	simpler	tac2cs	

Program	Planning	

•  For	each	problem	formulate	a	strategy	
–  Convince	yourself	that	you	can	implement	it	
–  Iden2fy	the	tac2cs	you	will	need	

•  For	each	tac2c	
– Design	a	state	transi2on	diagram	
– Design	corresponding		part	of	the	program	

•  Put	the	parts	together	

Debugging	
•  Fact:	Most	programs	have	bugs	

– Design	flaws	
–  Typos	
–  Bad	assump2ons	

•  Fact:	Bugs	cause	programs	to	misbehave	
–  Crash	
– Have	incorrect	behaviour	
–  Corrupt	data	
–  Can	cause	loss	of	life,	limb,	and	property	

•  Fact:	Buggy	programs	must	be	debugged	(fixed)	

The	When	and	the	How	

•  We	care	about		
– When	the	bug	manifests?	
– How	the	bug	manifests?	

•  Because	
– Programs	are	large	and		complicated	
– Want	to	restrict	our	bug	search	to	part	of	the	
program	

•  Idea:	Determine	the	first	instance	of	program	
misbehaviour	

Manifesta2on,	Loca2on,	Loca2on	
•  Idea:	

–  Bugs	manifest	in	program	misbehaviour	
–  Misbehaviour	corresponds	to	a	program	loca2on	
–  Need	to	match	the	manifesta2on	to	the	loca2on	

•  To	do:	
–  Iden2fy	the	bug	manifesta2on	

•  How	do	we	know	that	something	is	wrong?	
–  Iden2fy	the	manifesta2on	loca2on	

•  Where	in	the	code	does	this	something	occur?	
•  We	have	two	op2ons:	

–  Stare	the	code	and	guess	at	where	the	bug	is	
–  Use	a	mechanical	procedure	to	narrow	our	search	

•  Idea:	“Print”	to	the	screen	when	program	reaches	a	given	loca2on	

The	“print”	Method	

•  We	have	two	op2ons:	
–  Visually	match	code	to	execu2on	(ok	for	small	programs)	
–  Use	a	mechanical	procedure	to	narrow	our	search	

•  Goal:	
–  Need	to	determine	when	we	have	reached	specific	
loca2ons	in	our	program	

– Want	the	program	to	let	us	know	when	it	has	reached	a	
specific	loca2on	

•  Idea:	
–  Perform	output	when	specific	loca2ons	are	reached	
–  I.e.,	Turn	on	LEDs	when	our	program	reaches	a	set	loca2on	

Finding	the	Bug	

•  Use	divide-and-conquer	approach	
– Divide	program	into	stages	
– Narrow	loca2on	of	bug	
– Repeat	

Stage	2	 Stage	3	 Stage	4	 Stage	5	Stage	1	

Stage	2b	 Stage	2c	Stage	2a	

Odometry	
•  For	many	tasks	a	robot	needs	to	know	its	

–  Posi2on:	physical	loca2on	(x,y)	in	the	environment	
–  Orienta2on:	direc2on	it	is	facing	

•  Odometry		is	the	use	of	available	sensors	to	es2mate	the	robot's	current	
posi$on	and	orienta$on	

•  At	any	instant	has	robot	has	a	
–  Loca2on	and	orienta2on	

•  Specified	by	coordinates	(x,y)	and	direc2on	ϕ	
–  Velocity	

•  Specified	by	speed	s	and	direc2on	θ	
•  Specified	by	horizontal	and	ver2cal	speeds	(vx,vy)		

–  Coordinates	are	rela2ve	to	an	origin	(0,0)	
•  Fixed	loca2on	in	the	world		

•  Typically	assume	that	the	robot	
–  Knows	where	it	starts	or	
–  Can	determine	its	star2ng	loca2on	

(x,y)	
(s,θ)	

(0,0)	vx	

vy	

Implemen2ng	Odometry	

Linear	Mo2on	
•  Obs:	The	velocity	vector	represents	

distance	per	unit	2me,	e.g.,	(cm/s)	
•  Idea:	Update	posi2on	every	second	

by	adding	velocity	to	posi2on	
–  new	posi2on	=	old	posi2on	+	velocity	

•  If	velocity	is	represented	by	(s,θ)	
–  x'	=	x	+	s	×	sin(θ)	
–  y'	=	y	+	s	×	cos(θ)	

•  If	velocity	is	represented	by	(vx,vy)	
–  x'	=	x	+	vx	
–  y'	=	y	+	vy	

•  Which	is	simpler?	

Angular	Mo2on	
•  Obs:	Robots	some2mes	need	to	turn	
•  Assump2on:	Robot	will	turn	on	the	spot	

–  Orienta2on	ϕ will change
–  Position (x,y) does not change
–  Angular velocity α (deg/s) is does not

change	
•  Idea:	Update	orienta2on	every	second	

–  new	orient.	=	old	orient.	+	angular	velocity	×	
2me	

–  ϕ'	=	ϕ	+	(α	×	t)	
•  How	do	we	determine	(vx,vy)?	
•  Observa2ons:	We	know	the	velocity	(s,θ)		

–  Speed	s	is	based	on	motor	power		
–  Direc2on	θ	is	equal	to	the	orienta2on	φ	

•  Hence	
–  vx	=	s	×	sin(θ)	
–  vy	=	s	×	cos(θ)	(x,y)	 (x,y)	α	

ϕ	

Errors	in	Odometry	
•  We	know		

–  The	ini2al	posi2on	and	orienta2on	
–  The	speed	of	the	motors	and	the	

robot	
•  Problem:	Errors	are	introduced	

into	the	odometry	computa2ons	
–  Speed	is	not	constant	
–  Mo2on	is	not	straight	

•  What	could	go	wrong?	
–  Tires	don't	fully	grip	
–  Tires	are	not	iden2cal	
–  Motors	are	slightly	different	
–  Ba[ery	is	not	fully	charged	
–  Speed	sensors	have	variability	
–  Motors	engage	at	different	2mes	
–  Robot	may	bump	into	objects	

•  Idea:	Use	addi2onal	sensors	to	
correct	for	errors	
–  Rota2on	sensors	
–  Mo2on	sensors	
–  Accelerometers	and	Gyroscopes	
–  Compass	
–  Rangefinders	(infrared,	ultrasonic,	

or	laser)		
•  Challenges	

–  Sensors	are	imperfect	
–  Extrac2ng	informa2on	from	

environment	is	hard	
–  Extracted	informa2on	is	

incomplete	

Rota2on	Sensors	and	the	Control	Loop	
•  Idea:	Many	motors	have	built	in	

rota2on	(speed)	sensors	
–  Motor's	actual	speed	can	deviate	

from	desired	speed	
–  Actual	speed	can	be	adjusted	to	

match	desired	speed	
–  A	rota2on	sensor	measures	the	

motor's	actual	speed	to	adjust	
motor's	speed	as	needed	

•  Idea:	We	use	rota2on	sensors	
implicitly	
–  Robot's	motors	have	a	built	in	

control	loop	
–  We	set	the	desired	speed	of	the	

motors	
–  Assume	that	the	motors	run	at	the	

desired	speed	
•  What	about	using	other	sensors?	

desired	speed	(s)	

F(s,e)	

actual	speed	(a)	s	-	a	

error	(e)	

Control	Loop	

Visual	Odometry	

•  Idea:	Use	landmarks	to	gauge	posi2on	and	
speed	

•  Approach	1:	Op2cal	Flow	based	
– Compute	velocity	using	consecu2ve	camera	
images	

•  Approach	2:	Landmark	(map)	based	
– Compute	loca2on	by	matching	known	landmarks	
in	camera	images		

Introduc2on	to	Search	
•  One	of	the	most	common	tasks	in	robo2cs	is	to	map	

(explore)	a	given	environment	
–  Robot	must	know	where	it	is	and	where	it	was	
–  This	includes	searching	(avoid	searching	same	place	twice)	

•  Example:	Can	the	exit	be	found	without	loca2on	tracking?	

Random	Search	
•  Algorithm:	

Loop:	
–  Move	in	a	straight	line	
–  Turn	random	amount	when	

obstacle	encountered	

•  Reasoning:	
–  Robot	selects	random	

direc2on	regularly	
–  Robot	is	given	sufficient	2me	
–  Robot	should	eventually	visit	

every	loca2on	in	area	

Pa[ern	Based	Search	
•  Algorithm:	

–  Move	to	one	corner	
–  Sweep	back	and	fourth	
un2l	area	is	covered	

•  Reasoning:	
–  Fixed	pa[ern	in		a	regular	
space	will	cover	en2re	area	

–  Determining	where	to	start	
is	rela2vely	easy	

Mark	and	Sweep	Search	
•  Algorithm:	

–  Represent	area	by	a	grid	
–  Mark	keep	track	of	all	visited	

sec2ons	
–  Visit	nearest	unvisited	

sec2ons	

•  Reasoning:	
–  Grids	are	easy	to	store	
–  Easy	to	determine	which	

sec2on	to	visit	next	
–  All	unvisited	sec2ons	will	

eventually	be	visited	

✔	
✔	

✔	
✔	

✔	✔	✔	

✔	

Search	Comparisons	

Random	based	Search	
•  Pros:	

–  Easy	to	implement	
–  Almost	guaranteed	to	work	
–  Odometry	not	needed	
–  Works	in	odd	shaped	areas	

•  Cons:	
–  Inefficient	
–  Some	loca2ons	visited	

mul2ple	2mes	
–  Can't	reproduce	search	

PaCern	based	Search	
•  Pros:	

–  Simple	and	easy	to	implement	
–  Works	well	in	empty	rectangular	

areas	
–  Very	efficient	(2me-wise)	
–  No	need	to	remember	visited	

loca2ons	
•  Cons:	

–  Requires	good	odometry	
–  Does	not	work	in	odd	shaped	areas	
–  Require	a	priori	knowledge	of	area	
–  Hard	to	implement	if	area	contains	

obstacles	

Search	Comparisons	

Mark	and	Sweep	Search	
•  Pros:	

–  Efficient	
–  Works	with	obstacles	and	all	

areas	
–  Easy	to	track	objects	in	the	

area	
–  S2ll	rela2vely	simple	to	

implement	
•  Cons:	

–  Requires	good	odometry	
–  Uses	more	memory	

General	Discussion	
•  Q:	What	separates	simple	

from	complex	searches?	
•  A:	How	the	searches	

determines	which	sec2on	to	
visit	next	

•  I.e.,	
–  Simple	searches	base	their	

decisions	on	simple	things:	
•  E.g.,	where	is	the	nearest	

unvisited	sec2on?	
–  Complex	searches	usually	

consider	a	number	of	factors	in	
determining	the	next	sec2on	to	
visit	

