CSCI 1106
Lecture 22

Robotics Review

AC

What is Robotics

* From the OED:

“Robotics: The area or science of design, construction,
operation, and application of robotics and the like; the study
of robots.”

 Anatomy of a Robot

— Hardware Components:
* Sensors
e Control
* Actuators

— Software Components:
* Sensor Input Processing
e Decision Making
e Actuator Manipulation and Output

Event Driven Framework AC-
(Wait) Sense (Event)-Decide-Act

y%

Sensors

A sensor senses a property in its environment

Input: Analog
Output: Discrete

Have a variety of characteristics

Sensitivity : minimum change of input that results in change in output
Range : the minimum and maximum inputs that a sensor can handle
Response : the output of sensor for a given input

Response Time : how quickly the sensor can change state as a result of
a change of input

Precision : degree of reproducibility of the measurement

Accuracy : maximum difference between the true and measured value
Bias : the systemic error of the sensor

Variability : the random deviation from the true value

A

Sensors are Imperfect

e Sensors have two kinds of errors
* Key ldeas:

— No matter how good a sensor is, it is imperfect

— Imperfect sensors introduce uncertainty
* Bias
* Variability
— Need to quantify the uncertainty
— Need to quantify a sensor’s characteristics

* Can characterize sensors through a standard
process

L wnh e

o0

4
~ 4

How to Characterize a Sensor

|dentify the sensor we want to characterize

|dentify the sensor characteristic we want to measure
|dentify the possible variables of the characteristic

Fix all but one of the variables

Create a sequence of known actual” values where the
— One variable is varied and
— All other variables are fixed

Perform a sequence of measurements (multiple times) on
the "actual” values

Tabulate the results and compute means
Plot the results

Repeat steps 4 — 8, allowing a different variable to vary
each time

10. Analyze the plot(s) to derive the sensor’s characteristics

'

Making Use of the Results

* General observation(s)
— Response decreases as distance increases
— Useful for visual interpolation

* Create alinear model
— Draw a linear approximation
— Compute slope (m) and intercept (b) of the line

— Plug into equation of a line rise y,—y, 1000-3800

* Then what? m= = = —400
run - X, — X, 9-2

Response vs Distance

6000 X = 2,)/ = 3800
soo0 {04600}
y=mx+b=3800=-400x2+b

4000

T b = 4600
(91 y = mx+b mpy = —400.x + 4600

0 1 2 3 4 5 6 7 8 9

Distance in cm

A

Using Sensors

* Key Ideas:

— A sensor will not inform your program when a property
has changed

— The program must poll the sensor repeatedly to detect
change

* A program
— Polls the sensor to get its current value
— Interprets the value (compares it to a threshold)

* Defn: A threshold is a fixed constant such that an event
is triggered when a measurement from a sensor
returns a value that is above (or below) the constant

AC

Sampling

* Polling Frequency depends on
— The response time of the sensor
— The rate at which the environment changes

 The sampling rate is the frequency of the polls
* A higher rate means we are

— Less likely to miss a change in inputs
— Using more CPU time to poll the sensor

AC

Sensor Variability

* Problem: All sensors have some variability

— The measured value randomly deviates from the
true value

— A sensor may report different values for the same
true value

e Solution:
— Take multiple measurements
— Aggregate (mean, median, mode) the results

AC

Actuators

e Actuators allow the robot to affect the world

e Actuators are characterized by their parameters and
tolerances:

— Torque, force, and pressure
— Speed, power, and strength
— Accuracy and precision

e Two kinds of uses

— Synchronous use:
* Start operation
* Wait until the operation completes
* Continue program

— Asynchronous use:
* Start operation

* Continue program
* Use sensors or poll actuator to determine operation completion

A

State Transition Diagrams

|ldea: Use state transition diagrams to model

— Steps of a task
— Conditions under which the steps are performed
— Environment of the robot during the task

Consists of states and transitions
A state is a unique set of conditions that hold at a given
time
— System can only be in one state at a time
A state transition occurs when

— An event occurs
e External events (sensor input)
* Internal events (completion of a task, timer)

— One of the conditions describing the state changes
— The state of the system changes

State Transition Diagrams

* |dea: We use a state transition diagram to model a task
e States are represented by circles
* Arrows represent transitions between states

red/yellow * Iflightis red, wait for light
to turn green

e Iflightis yellow, wait for
light to turn green

* Iflightis green but there is
not enough time, wait for
light to turn red and then
green

e Iflightis green and there is
enough time,
— Proceed on crosswalk
— If acaris speeding at you,
get out of the way
e Stop crossing when other
side is reached

A

Creating State Transition Diagrams

Identify the states (steps) of a task
— Determine what actions must be performed
— Determine groups of unique (relevant) conditions
— Label each group with a unique name
Identify state to state transitions
— What is being sensed?
— What external events will be sensed?
— What internal events will occur?
— What conditions will these events change?
— Determine which conditions change?
— Determine the corresponding states in the transition
— Label each transition with a unique label

Create diagram
— Combine states and transitions
— Refine the diagram by repeating the process

This diagram is a blueprint for your program!

AG

Translating State Transition Diagrams

* Problem:

— We design our solution by creating a state transition
diagram (STD)

— We need to translate the STD into a program
* |dea: Use a standard process
— Use a variable to encode the current state
— Enumerate all states as constants
— |ldentify events associated with each transition
— Gather transition information
— Implement event handlers to perform the transitions

4

Tracking and Enumerating States

var state = STOPPED

e Use a state variable —

— Stores the current state
— Set to an initial state,

motor.left.target = 0
motor.right.target = 0

onevent button.forward
state = RIGHT

onevent button.backward

e.g., STOPPED motor. Lett target = 0
* Enumerate all states e Rl
— Select state names Iﬁiiﬁlow ESZ
e.g., STOPPED, RIGHT, LEFT STOPPED 0
— Number consecutively o :
LeFT ;

— Add states as constants
 Can be done automatically

LD do | g | -

il

ldentify Events

* |dentify the events associated with each transition
— button. forward: Forward Button pressed
— prox: horizontal proximity or ground proximity sensors
— timer0 or timerl: timer has expired
— tap: robot tapped
— etc
 Add an event handler for each event
— onevent button.forward
— onevent prox
— onevent timer0

* |n each handler implement all the transitions
associated with the event

-
;4

Gather Transition Information

back button

For each transition, identify
— States (CONSTANTS)
— Event (handler)
— Sensor/device
— Change in sensor/device
— Thresholds (if any)
— Action to perform

E.g., transition: fwd = left

— States:
From: fwd (FORWARD)
To: left (LEFT)

— Event (Handler): prox

— Sensor: prox.ground.delta[0]

— Change in sensor: response decreases (dark)
— Threshold: < 500 means dark

— Turn left
motor.left.target = 0
Motor.right.target = 200

Implement the transitions in their event handlers

fwd button

back button

back button

il

Implement the Transitions

* Inside the handler use template:
1f state == FROM STATE and sensor has changed then
state = TO STATE
perform action
end
* E.g., transition: fwd = left
onevent prox
if state == FORWARD and prox.ground.delta[0] < 500 then
state = LEFT
motor.left.target = 0 pack button
motor.right.target = 200
end fwd button

back button

black line

back button

if

.4
1f vs when
when
Form: * Form:
if condition then when condition do
body body
end end

If the condition is true

the body is executed

E.g., if we see a stop sign
stop, regardless of whether
we are already stopped

If the condition is true now
and was not true before,
the body is executed

E.g., if we see a stop sign
and we are not stopped,
then stop

Dealing with Failure

Things don’t always go as planned...

Need to do two things
— ldentify when a failure has occurred
— Respond to the failure

Failure is a state that the system should not be in under
normal conditions

Failure cause is the physical or functional reason for the
failure

Failure manifestation is the detectable effect of the failure
— To identify failure, it must manifest itself in a detectable way

Obs: We can only deal with failures that we can foresee

A

Failure Identification

ldea: We can identify that a failure has occurred from
its manifestation
To identify a failure, we need to

— Determine what can cause the failure

— How the failure manifests

When designing a program we need to (attempt) to
enumerate all relevant failures

Narrow the enumeration to:

— Failures we can deal with

— Failure causes we understand

— Failure manifestations we can identify

A

Mechanisms for Detecting Failure

e Unexpected external events

— Sensors register an unexpected changes in environment
e Sensors give false readings
e Sensors give true readings of unexpected conditions

— Actuators report status errors
e Actuator fails to perform specified task
e Actuator reports error where none has occurred

* Lack of expected external events

— A timer expired while waiting for an expected event *
* Sensor fails to register the expected event
* Expected event does not occur

— Actuators fail to move the prescribed amount
* Encounter unexpected resistance
 Unexpected (or lack there of) internal events
— Programs run code they are not supposed to (bugs)

"
;4

Failure Response and Recovery

Once we determine that a failure has occurred,
we need to respond to it

Response mechanisms are parts of the program
that respond to the failure

Two options:
— Place system in a safe state (shut down)
— Recover from the failure

A recovery mechanism returns the system to a
normal state

Recovery mechanisms are specific to each failure

4

Modeling Failure Recovery .

* |dea: Use state transition diagrams to model
failure identification, response, and recovery

timer

A

Strategy and Tactics

* How are we going to solve the problem?
— Typically there is more than one way
— Can be described in a couple sentences
— Use one strategy per problem
e Astrategy is implemented with tactics
— Tasks
— ldeas
— Concepts

e Each part of the strategy is implemented with one or
more tactics

— Tactics may be composed of multiple simpler tactics

AC

Program Planning

* For each problem formulate a strategy
— Convince yourself that you can implement it
— |ldentify the tactics you will need

* For each tactic
— Design a state transition diagram
— Design corresponding part of the program

e Put the parts together

DB B DB DBDD
S) [) ———

Debugging

* Fact: Most programs have bugs
— Design flaws
— Typos
— Bad assumptions
e Fact: Bugs cause programs to misbehave
— Crash
— Have incorrect behaviour
— Corrupt data
— Can cause loss of life, limb, and property

* Fact: Buggy programs must be debugged (fixed)

o

The When and the How

 We care about
— When the bug manifests?
— How the bug manifests?

* Because

— Programs are large and complicated

— Want to restrict our bug search to part of the
program

* |dea: Determine the first instance of program
misbehaviour

il

Manifestation, Location, Location

ldea:
— Bugs manifest in program misbehaviour
— Misbehaviour corresponds to a program location
— Need to match the manifestation to the location

To do:

— Identify the bug manifestation
* How do we know that something is wrong?

— Identify the manifestation location
 Where in the code does this something occur?
We have two options:
— Stare the code and guess at where the bug is
— Use a mechanical procedure to narrow our search

Idea: “Print” to the screen when program reaches a given location

The “printf” Method

 We have two options:
— Visually match code to execution (ok for small programs)
— Use a mechanical procedure to narrow our search

e Goal:

— Need to determine when we have reached specific
locations in our program

— Want the program to let us know when it has reached a
specific location

e |dea:

— Perform output when specific locations are reached
— l.e., Turn on LEDs when our program reaches a set location

AC

Finding the Bug

* Use divide-and-conquer approach
— Divide program into stages
— Narrow location of bug

— Repeat

Odometry

For many tasks a robot needs to know its

— Position: physical location (x,y) in the environment

— Orientation: direction it is facing

A

Odometry is the use of available sensors to estimate the robot's current

position and orientation

At any instant has robot has a

— Location and orientation
 Specified by coordinates (x,y) and direction ¢

— Velocity
* Specified by speed s and direction 6
* Specified by horizontal and vertical speeds (v,,v,)

— Coordinates are relative to an origin (0,0)
* Fixed location in the world
Typically assume that the robot
— Knows where it starts or
— Can determine its starting location

(0,0)

"
b4

Implementing Odometry

Linear Motion

Obs: The velocity vector represents
distance per unit time, e.g., (cm/s)
Idea: Update position every second
by adding velocity to position

— new position = old position + velocity
If velocity is represented by (s,0)

— X' =x+sxsin(0)

— y'=y+sxcos(0)
If velocity is represented by (v,,v,)

— X' =X+V,

— Yy =y+y,
Which is simpler?

Angular Motion

Obs: Robots sometimes need to turn
Assumption: Robot will turn on the spot
— Orientation ¢ will change
— Position (x,y) does not change

— Angular velocity « (deg/s) is does not
change

Idea: Update orientation every second

— new orient. = old orient. + angular velocity x

time

- ' =P+ (axt)
How do we determine (v,,v,)?
Observations: We know the velocity (s,0)

— Speed s is based on motor power

— Direction 0 is equal to the orientation ¢
Hence

- v,=sxsin(0)

— v, =sxcos(0)

AC

Errors in Odometry

We know
— The initial position and orientation
— The speed of the motors and the
robot
Problem: Errors are introduced
into the odometry computations
— Speed is not constant
— Motion is not straight

What could go wrong?
— Tires don't fully grip
— Tires are not identical
— Motors are slightly different
— Battery is not fully charged
— Speed sensors have variability
— Motors engage at different times
— Robot may bump into objects

Idea: Use additional sensors to
correct for errors

Rotation sensors

Motion sensors

Accelerometers and Gyroscopes
Compass

Rangefinders (infrared, ultrasonic,
or laser)

Challenges

Sensors are imperfect

Extracting information from
environment is hard

Extracted information is
incomplete

AC

Rotation Sensors and the Control Loop

Idea: Many motors have built in
rotation (speed) sensors

Motor's actual speed can deviate
from desired speed

Actual speed can be adjusted to
match desired speed

A rotation sensor measures the
motor's actual speed to adjust
motor's speed as needed

Idea: We use rotation sensors
implicitly

Robot's motors have a built in
control loop

We set the desired speed of the
motors

Assume that the motors run at the
desired speed

What about using other sensors?

desired speed (s)

g

F(s,e)

1

error (e)

T

actual speed (a)

Control Loop

A

Visual Odometry

* |dea: Use landmarks to gauge position and
speed
e Approach 1: Optical Flow based
— Compute velocity using consecutive camera
images
* Approach 2: Landmark (map) based

— Compute location by matching known landmarks
In camera images

'

Introduction to Search

* One of the most common tasks in robotics is to map
(explore) a given environment

— Robot must know where it is and where it was
— This includes searching (avoid searching same place twice)

 Example: Can the exit be found without location tracking?

A

Random Search

e Algorithm: * Reasoning:
Loop: — Robot selects random
— Move in a straight line direction regularly
— Turn random amount when — Robot is given sufficient time
obstacle encountered — Robot should eventually visit

every location in area

A

Pattern Based Search

e Algorithm: * Reasoning:
— Move to one corner — Fixed pattern in a regular
— Sweep back and fourth space will cover entire area
until area is covered — Determining where to start

is relatively easy

A

Mark and Sweep Search

e Algorithm: * Reasoning:
— Represent area by a grid — Grids are easy to store
— Mark keep track of all visited — Easy to determine which
sections section to visit next
— Visit nearest unvisited — All unvisited sections will

sections eventually be visited

AG

Search Comparisons

Random based Search Pattern based Search

° Pros: * Pros:
— Simple and easy to implement

— Works well in empty rectangular
— Almost guaranteed to work areas

— Very efficient (time-wise)

— Easy to implement

— Odometry not needed
— No need to remember visited

— Works in odd shaped areas locations
e Cons: * Cons:
.. — Requires good odometry
— Inefficient

— Does not work in odd shaped areas
— Require a priori knowledge of area
multiple times — Hard to implement if area contains

— Can't reproduce search obstacles

— Some locations visited

A

Search Comparisons

Mark and Sweep Search General Discussion
e Pros: e Q: What separates simple
?
_ Efficient from cor?]plex se::]rches.
— Works with obstacles and all A: HOW.t € Searcnhes
reac determines which section to
. _ visit next
— Easy to track objects in the e e
area Y
, , _ — Simple searches base their
— Still relatively simple to decisions on simple things:
implement e E.g., where is the nearest
unvisited section?
* Cons:
_ — Complex searches usually
— Requires good odometry consider a number of factors in
— Uses more memory determining the next section to

visit

