
Reinforcement Learning 1
1.1 Learning from reward and the credit

assignment problem

In supervised learning as outlined in Chapter 6, we assumed that a teacher
supplies the exact desired state of each output node in the network. Such a
teacher has to supply very detailed information, which seems unrealistic in com-
mon learning situations. More realistic are teaching procedures with limited
feedback such as an answer being ‘good’ or ‘wrong’. When training animals,
a correct response is often acknowledged with a food reward. An absence of a
food reward can indicate a ‘false response’ to the animal. Another challenge
for a learner is that feedback might only be provided at the end of a series
of actions, and we need to solve how to reward components of actions that
have contributed to successful outcomes. This section discusses such learning
systems.

1.1.1 Classical conditioning and the reinforcement
learning problem

Learning with reward signals has been studied by psychologists for many years
under the term conditioning. An example of classical conditioning in animal
learning is shown in Fig. 1.1. In the illustrated experiment, we place a rodent
in a T-maze and supply food of different sizes when the rodent goes to the end
of each horizontal arm of the T-maze.

The rodent might wander around, and let us assume that it finds the smaller
food reward at the end of the left arm of the T-maze. It is then likely that
the rodent will turn left in subsequent trials to receive food reward. Thus the
animal learned that the action of taking a left turn and going to the end of
the arm is associated with food reward. The learning challenge here is a form
of a credit assignment problem. We can think of this in terms of a temporal
credit assignment problem in which the animal has to associate the food at a
later state with the action at a previous state. If we have a distributed system
implementing possible action such as a neural network, then we can also view
this as a spatial credit assignment, which means in this context the question
of which part of the action system to credit for the receivership of the food
reward.

We are discussing here reinforcement learning directly in the context of an
action system, which relates to instrumental conditioning in the animal learn-
ing literature. We will discuss below that this usually requires a action system
as well as a value system. A slightly simpler form of reinforcement learning

2 Reinforcement Learning

classical conditioning that formally mainly evaluates a value system. For ex-
ample, we could ring a bell and then present food to the rodent. In our terms
this is another interesting example of a temporal assignment problem, that of
associating the sound of the bell with food reward, and a situation where we
can concentrate on the value system. We will see later that this distinction is
not entirely necessary when using the language developed here.

Fig. 1.1 Example of instrumental and
classical conditioning. A) A rodent
has to learn to transverse the maze
and make a decision at the junction in
which direction to go. Such as decision
problem, which necessitates the action
of an actor, is called instrumental con-
ditioning in the animal learning litera-
ture. B) A slightly simpler setting is
that of classical conditioning where a
subject is required to associate the ring-
ing of a bell with reward. Such a setting
is focusing on a value system in our re-
inforcement learning setting.

A) Instrumental conditioning in T-maze B) Classical Conditioning

1.1.2 Formalization of the problem setting: The Markov
Decision Process

We consider an agent that in each time interval k is in a specific state xk from
which it can take an action uk. This action specifies a transition to a new state,
and this transition is specified by a function τ as

Transition function: xk+1 = τ(xk, uk). (1.1)

The transition function only depend on the previous state and the intended
action from this state, and this is called the Markov condition. A Markov
decision process is a good place to start as it often applies with the right
definition of state and also illustrates best the principle ideas. In contrast, a
non-Markov condition would be the case in which the next state depends on a
series of previous states and actions, and our agent would then need a memory
to make optimal decisions.

The environment or a teacher provides reward according to a function ρ,

Reward function: rk+1 = ρ(xk, uk). (1.2)

And finally, the agent has a control policy that specifies which action u to take
from each state,

Policy: uk = π(xk) (1.3)

In the context of a mobile agent, the action uk that the agent should take
at time k, the time when the agent is in state xk, is a motor command. For
example, a mussel that should move the arm should be activated with a certain
nerve pulse, or a robot that should turn is activated by a certain motor that
should run for a certain time with a certain speed.

1.2 Model-based Reinforcement learning 3

1.1.3 Return and Value functions

The goal of the agent is to maximize the total expected reward in the future from
every initial state. This quantity is also called return, especially in economics.
Here we discuss the exemplary case in which the agent values immediate reward
more than reward far in the future. To capture this we define the infinite
discounted return from state x = x0 following policy π,

V -function: V π(x) :=

∞∑
k=0

γkρ(xk, π(xk)) (1.4)

Another common choice is the average reward in a finite horizon case, but we
focus on the former to keep the number of cases under control. A more detailed
value function that evaluates the value of each action taken from a state is the
infinite discounted return, which is taking action u = u0 from state x = x0 and
then follows policy π, that is, u1 = π(x1)→ x2 = τ(x1, u1)→ u2 = π(x2), etc,

Q-function: Qπ(x, u) :=

∞∑
k=0

γkρ(xk, uk) (1.5)

= ρ(x, u) + γ

∞∑
k=1

γk−1ρ(xk, π(xk))

= ρ(x, u) + γV π(τ(x, u)).

The goal of RL is to find the policy which maximized the return. If the
agents knows the

Optimal Value function: V ∗(x) = max
u

Q∗(x, u), (1.6)

then the optimal policy is simply given by taking the action that leads to the
biggest expected return, namely

Optimal policy: u∗(x) = arg max
u

Q∗(x, u). (1.7)

Thus, the optimal value function and the optimal policy are closely related.
Nevertheless, the methods below can be distinguish somewhat in terms of how
the algorithms chose actions during learning. We will start with methods that
focus on finding the value function, which are several algorithms that can be
put under the heading value-search. Corresponding agents, or part of the cor-
responding algorithm, are commonly called a critic. A agent that learns by
focusing on policy-search is called an actor. Later we argue that combining
these in an actor-critic scheme is a viable method in practice and likely used
in the brain.

1.2 Model-based Reinforcement learning

In this section we assume that the agent has a model of the environment and
its behaviour by knowing the reward function ρ(x, u) and the transfer functions
τ(x, u). The knowledge of these functions, or a model thereof, is required for
model-based RL, which is also called dynamic programming.

4 Reinforcement Learning

1.2.1 The basic Bellman equation

The key to learning the value functions is the realization that the right hand
side of eq.1.5 can be written in terms of the Q-function itself, namely

Qπ(x, u) = ρ(x, u) + γ

∞∑
k=1

γk−1ρ(xk, π(xk))

= ρ(x, u) + γ

[
ρ(τ(x, u), π(τ(x, u))) + γ

∞∑
k=2

γk−2ρ(xk, π(xk))

]
.

The term in the square bracket is equal to the value function of the state that
is reached after the transition τ(x, u)

Qπ(τ(x, u), π(τ(x, u))) = V π(τ(x, u)). (1.8)

The Q-function and the V -function are here equivalent since we are following
the policy in these steps. Using this fact in the equation above we get the

π Bellman equation: Qπ(x, u) = ρ(x, u) + γQπ(τ(x, u), π(τ(x, u))). (1.9)

If we combine this with known dynamic equations in the continuous time do-
main, then this becomes the Hamilton-Jacobi-Bellman equation. often encoun-
tered in engineering.

As stated above, we assume here the reward function ρ(x, u) and the tran-
sition functions τ(x, u) are known. At this point the agent follows a specified
policy π(x). Let us further assume that we have X states and U possible ac-
tions in each state. We have thus X×U unknown quantities Qπ(x, u) which are
governed by the Bellman equation above. More precisely, the Bellman equa-
tions 1.9 are X × U coupled linear equations of the unknowns Qπ(x, u). It is
then convenient to write this equation system with vectors

Qπ = R + γTπQπ (1.10)

Where Tπ is an appropriate transition matrix which depends on the policy.
This equation can also be written as

R = (11− γTπ)Qπ, (1.11)

where 11 is the identity matrix. This equation has the solution

Qπ = (11− γTπ)−1R(?) (1.12)

if the inverse exists. In other words, as long as the agent knows the reward
function and the transition function, it can calculate the value function for a
specific policy without even taking a single step.

Alternatively we can solve the Bellman equation with an iterative algorithm.
We thereby starts with a guess of the Q-function, let’s call this Qπi , and improve
it by calculating the right hand side of the Bellman equation,

Dynamic Programming: Qπi+1(x, u)← ρ(x, u) + γQπi (τ(x, u), π(τ(x, u))).
(1.13)

1.2 Model-based Reinforcement learning 5

The fixed-point of this equation, that is, the values that does not change with
these iterations, are the desired values of Qπ. Another way of thinking about
this algorithm is that the Bellman equality is only true for the correct Qπ

values. For our guess, the difference between the left- and right-hand side is
not zero, but we are minimizing this with the iterative procedure above.

1.2.2 Programming example

To illustrate the different reinforcement schemes discussed in this chapter, we
will apply these to the example of the T-maze outlined in the introduction. To
keep the programs minimal and clean, we will concentrate on the upper linear
part for the maze as illustrated in Fig. 1.2. We labeled the states x of the
maze as 1 to 5. A reward of value 1 is provided in state 1 and a reward of 2
is provided in state 5. The discrete Q-function has 10 values corresponding to
each possible action in each state. In states 2,3, and 4 these are the actions
of move left or move right. The states with the reward, states 1 and 5, are
terminal states and the agent would stay in these states. We coded this with
two stay actions to keep some consistency in the representation.

 State x: 1 2 3 4 5

s s l r l r l r s sQ*(x,u):

π(x):

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 s
 s
 l
 r
 l
 r
 l
 r
 s
 s

1

3

2

5

4

1 2 3 4 5 6 7 8 9 10

s s l r l r l r s s

1 32 54State
Action
Index

ρ(x): 1 0 0 0 2

Fr
om

To

Fig. 1.2 Example experiment with the simplified T-maze where we concentrate on the more interesting horizontal
portion of the maze. The right hand side shows the corresponding transition matrix for the optimal policy.

We first set up some code that we need in all examples:

%% Reinforcement learning in a maze
clear; close all;

tau = @(x,u) x+heaviside(x-1.5).*heaviside(4.5-x)*u;
rho = @(x,u) (x==2&&u==-1)+2*(x==4&&u==1);
idx = @(u) (u+3)/2';
gamma=0.5;

We provide here three inline functions for τ(x, u), ρ(x, u), and a helper function
that transforms the action representation u ∈ {−1, 1} to the corresponding
indices idx ∈ {1, 2}. We also define here the discount factor γ = 0.5.

6 Reinforcement Learning

To demonstrate how to solve the Bellman equation with linear algebra tools,
we need to define the corresponding vectors and matrices as used in eq.??. We
order therefore the quantities such as ρ and Q with ten indices. The first one
correspond to (x = 1, u = −1), the second to (x = 1, u = 1), the third to
(x = 2, u = −1), etc. The reward vector can thus be coded as:

%% Analytic solution for optimal policy
i=0;
for x=1:5; for u=-1:2:1;
i=i+1; R(i)=rho(x,u);

end; end;

The transition matrix depends on the policy, so we need to choose one. We
chose the one specified on the left in Fig. 1.2 where the agent would move to
the left in state x = 2 and to the right in states x = 3 and x = 4. This happens
to be the optimal solution as we will show later so that this will also give us
a solution for the optimal value function. We use this policy to construct the
transition matrix by hand as shown on the right in Fig. 1.2. For example, if
we are in state x = 4 and move to the left, u = −1, corresponding to the
from-index=7, then we end up in state x = 3, from which the policy say go
right, u = 1. This correspond to the to-index=6. Thus, the transition matrix
should have an entry T (7, 6) = 1. Going through all the cases leaves us with

T=zeros(10,10);
T(1,1)=1; T(2,2)=1; T(3,1)=1; T(4,6)=1; T(5,3)=1;
T(6,8)=1; T(7,6)=1; T(8,10)=1; T(9,9)=1; T(10,10)=1;

With this we can solve the equations in Matlab simply by the inv() function.

Q=inv(eye(10)-gamma*T)*R';
Q=reshape(Q,2,5)

In the last line we have reshaped the Q-vector into a matrix with two lines, the
first correspond to the values for moving left in the corresponding state, and
the second correspond to moving right in the corresponding state. The result
is

0 1.0000 0.5000 0.5000 0
0 0.5000 1.0000 2.0000 0

1.2.3 Policy iteration

The goal of RL is of course to find the policy which maximized the return. So
far we have only a method to calculate the value for a given policy. However,
we can start with an arbitrary policy and can use the corresponding value
function to improve the policy by defining a new policy which is given by taken
the actions from each state that gives us the best next return value,

Policy iteration:π(x)← arg max
u

Qπ(x,u). (1.14)

1.2 Model-based Reinforcement learning 7

For the new policy we can then calculate the corresponding Q-function and
then use this Q-function to improve the policy again. Iterating over the policy
gives us the

Optimal policy: π∗(x). (1.15)

The corresponding value function is Q∗. In the maze example we can see that
the maximum in each column of the Q-matrix is the policy we started with.
This is hence the optimal policy as we stated before.

The corresponding code for our maze example is

%% policy iteration
Q=zeros(5,2); pi=-ones(5,1);
for iter=1:3;

for x=1:5; for u=-1:2:1
Q(x,idx(u))=rho(x,u)+gamma*Q(tau(x,u),idx(pi(tau(x,u))));

end; end
for x=1:5;

[~,uidx]=max([Q(x,1),Q(x,2)]); pi(x)=2*uidx-3;
end

end
disp('Policy iteration'); disp(Q')

In this example we used only 3 iterations over the policies, which is the minimal
for this example. In practice, we would check if the values actually change and
would stop if not.

1.2.4 Bellman function for optimal policy and value
iteration

Since we are foremost interested in the optimal policy, we could try to solve
the Bellman equation right away for the optimal policy,

Q∗(x, u) = ρ(x, u) + γQ∗(τ(x, u), π∗(τ(x, u))). (1.16)

The problem is that this equation does now depend on the unknown π∗. How-
ever, we can check in each state all the actions and take the one which gives us
the best return. This should be equivalent to the equation above in the optimal
case. Hence we propose the

Optimal Bellman equation: Q∗(x, u) = ρ(x, u) + γmax
u′

Q∗(τ(x, u), u′).

(1.17)
We can solve this with dynamic programming when the transfer function and
the reward functions are known,

Q-iteration: Q∗i+1(x, u)← ρ(x, u) + γmax
u′

Q∗(τ(x, u), u′). (1.18)

The corresponding code for our maze example is

%% Q-iteration
Q=zeros(5,2);
for iter=1:10;

for x=1:5; for u=-1:2:1

8 Reinforcement Learning

Qnew(x,idx(u))=rho(x,u)+gamma*max(Q(tau(x,u),1),Q(tau(x,u),2));
end; end

Q=Qnew;
end
disp('Q-iteration'); disp(Q')

In this example we again used 3 iterations which are sufficient to reach the
correct values. In practice we would terminate the program if the changes are
sufficiently small.

1.3 Model-free RL: Temporal difference
method

Above we assumed a model of the environment by an explicit knowledge of
the functions τ(x, u) and ρ(x, u). We could use modelling techniques and some
sampling strategies to learn these functions explicitly and then use model-based
RL as described above to find the optimal policy. Instead we will here combine
here the sampling by exploring the environment directly with reinforcement
learning.

We will start again with a version for a specific policy by choosing a policy
and estimate the Q-function for this policy. As in dynamic programming we
want to minimize the difference between the left- and right-hand side of the
Bellman equation. But we can not calculate the right hand side since we do
not know the transition function and the reward function. However, we can
just take a step according to our policy u = π(x) and observe a reward ri+1

and the next state xi+1. Now, since this is only one sample we should take this
only with a small learning rate α into account to update the value function

SARSA: Qi+1(xi, ui)← Qi(xi, ui)+α [(ri+1 + γQi(xi+1, ui+1)−Qi(xi, ui)] .
(1.19)

The term in the square brackets on the right hand-side is called the temporal
difference. Note that we are following here the policy, and the methods is
therefore often labeled as on-policy. The next step is to use the estimate of the
Q-function to improve policy. However, since we are anyhow mainly interested
in the optimal policy we should improve the policy by taking the the steps that
maximizes the payoff. However, one problem in this scheme is that we have
to estimate the Q values by sampling so that we have to make sure to trade
off exploitation with exploration. A common way to choose the policy in this
scheme is the

ε-greedy policy: p
(

arg max
u

Q(x, u)
)

= 1− ε. (1.20)

So, we are really evaluating the optimal policy that requires to make the ex-
ploration zero at the end, ε→ 0.

The corresponding code for the SARSA is

%% SARSA
Q=zeros(5,2); alpha=0.1; %starting state
for trial=1:1000

1.3 Model-free RL: Temporal difference method 9

x=3;
for t=1:5;

[~,u]=max([Q(x,1),Q(x,2)]);u=2*u-3;
if rand()<0.1; u=-u; end %epsilon exploration
Q(x,idx(u))=(1-alpha)*Q(x,idx(u))+alpha*(rho(x,u)+gamma*Q(tau(x,u),idx(u)));
x=tau(x,u);

end;
error(trial)=sum(sum(abs(Q-Qnew)));

end
disp('SARSA'); disp(Q')
plot(error)

Alternatively we can evaluate the samples off-policy, that is, we can check
again all possible actions from a state and update the value function with the
maximal expected return,

Q-learning: Qi+1(xi, ui)← Qi(xi, ui)+α
[
(ri+1 + γmax

u′
Qi(xi+1, u

′)−Qi(xi, ui)
]
.

(1.21)
This is also the right choice if we take the policy

Optimal policy: u∗(x) = max
u′

Q(x, u′) (1.22)

The corresponding code for the Q learning is

%% Q-learning
Q=zeros(5,2); alpha=0.1; %starting state
for trial=1:1000

x=3;
for t=1:5;

[~,u]=max([Q(x,1),Q(x,2)]);u=2*u-3;
if rand()<0.1; u=-u; end %epsilon exploration
Q(x,idx(u))=(1-alpha)*Q(x,idx(u))+alpha*(rho(x,u)+gamma*max(Q(tau(x,u),1),Q(tau(x,u),2)));
x=tau(x,u);

end;
error(trial)=sum(sum(abs(Q-Qnew)));

end
disp('Q-learning'); disp(Q')
plot(error)

1.3.1 Actor and policy search

In the previous algorithms we have basically focussed on finding a value function
and the policy was determined by the value function as being the action that
lead to the state with the largest return. The value function is then often
described as a critic. Interestingly, this way of reinforcement learning is not
always the best approach during a learning phase. For example, while learning
the value function it can happen that the values of two states are similar, and
a slight shift in the estimation can shift the policy dramatically. Such sudden
shifts can destabilize a system which itself might depend on the actions of
agents that make up the environment. We therefore now allow the agent to
consider its own policy and study the gradual change of the policy. Such a
component of the system is called the actor.

In the previous settings for the critic we considered maximizing the return
for each possible starting state. In policy search it is more common to consider

10 Reinforcement Learning

policies that would work for every starting state and to maximize the slightly
relaxed condition of maximizing the average return – or the expected return
– over all possible starting position when following the policy. This objective
function is given by

Actor objective function: J(π) = E{
∞∑
k=0

γkρ(xk, π(xk))}x0 , (1.23)

where the averaging is over all starting states x0.
Minimizing this objective function can be done in various was. For example,

we could use guided random search such as evolutionary algorithms to search
for suitable policies. It is also common to parameterize possible policies and
use a gradient-based optimization in the in the parameter space that maximizes
the objective function.

1.4 Using function approximation with neural
networks

At this point we have outlines the basic ideas behind the basic reinforcement
learning algorithm, and we will no move to an important topic to scale these
ideas to real world applications. In the previous method we used functions
of the state and action variables such as the transition function τ(x, u). The
general, the state and action variables could be continuous variables, though
we used only small discrete sets in the maze example. For discrete values we
can think of representing the functions as a table, and such methods are corre-
spondingly called tabular methods. Many problems in the literature use a small
number of states and actions, in particular in simplified psychophysical exper-
iments. The general problem in reinforcement learning is that the necessary
computations scale up quickly with the number of states, a difficulty that has
been termed the ”course of dimensionality” by Bellman himself. The principle
idea in this section is to use function approximators to represent the functions,
and it should be no surprise that we will specifically use neural networks for
these function approximations.

1.4.1 Temporal delta rule

In order to introduce implementations of systems which learn from reward
within neural architectures, we simplify the situation further with an example
of classical conditioning in which the action of the agent is fixed. The purpose
of the system introduced now is to predict future reward with this fixed policy,
or in other words, to evaluate the state value function V π(x), from episodes
in which some states are rewarded, possibly at a later time. Let’s assume
that this state value function, relating states to reward, is simple enough to be
learned by a linear population node as discussed in Chapter 6 and illustrated in
Fig. 1.3A. The input of the node represents a state at time t, x(t). This state
is represented by an input vector rini (x), which we can think of as reprinting
cortical activity which encodes the internal representation of the state of an

1.4 Using function approximation with neural networks 11

agent. The output of the linear reward-prediction node is

V (x) =
∑
i

wi(t)r
in
i (x). (1.24)

The rate values of the perceptron are time dependent in the sense that the
agent changes states in each time step so that the input states x change with
time. We also indicated explicitly the time dependence of the weight values,
wi(t), since they will change over time as a function of reinforcement signals.
Note that time here refers to behaviourally relevant time slots.

slow

r (t)

V(t −1)
slow

fast

C. Temporal difference ruleB. Temporal delta ruleA. Linear predictor node

r j
in(t-1)

r2
inr1

in r3
in (t)r4

in(t) (t) (t)

r2
inr1

in r3
in (t)r4

in(t) (t) (t)

V(t −1)

r (t)

r (t)r (t)

V(t)
γ V(t)

r2
inr1

in r3
in (t)r4

in(t) (t) (t)

in(t-1)r j

V(t) V(t)eligebilty
trace

Fig. 1.3 Neural implementation of re-
ward learning algorithms. (A) Linear
predictor node. (B) Temporal delta
rule with primary reward r. The out-
put of the predictor node is indicated
at time t − 1 since the connection is
considered to be slow. (C) Temporal
difference rule with a fast side loop.

The agent is taking an action in response to the state according to the fixed
policy, π, and this action results in a reward at the next time step, r(t +
1). We want to update the weights at this time of reward to reflect the new
knowledge of reward at this time. We first consider the case in which the system
should predict the reward for each state, which corresponds to a value function
that treats the reward following each state independently. In this case, the
actual reward can be used as the desired output, and we can use the delta rule
discussed in Chapter 6to train the linear perceptron,

wt+1
i = wti + α ∗ r̂(t)rini (x). (1.25)

The parameter α is a learning rate, and we introduce in this equation the
effective reinforcement signal

r̂(t) = r(t− 1)− V (t− 1). (1.26)

The learning rule, eqn 1.25, is sometimes called a temporal delta rule because
of the temporal difference between actual reward and predicted time return. Of
course, since this is a one step prediction task, the predicted return is equal to
the predicted reward. In essence this is just the regular perceptron learning rule
where we considered different time slots for the prediction of the perceptron
and the supervision signal to arrive. In this case, the system needs to remember
the value V (xt) for one time step, and we indicate this memory in the model
shown in Fig. 1.3B as slow output channel, or axional delay. In essence this
could be any short term memory mechanisms. In addition, the system must

12 Reinforcement Learning

remember the input values (rini (x)) for one time step because we attribute the
cause for the reward to taking the fixed action from the previous state. This
memory is often called an eligibility trace in the corresponding literature, in
particular if we consider longer sequences until a reward is given, as discussed
later. In the simplified case here with a one-step-ahead prediction tasks, the
eligibility trace for the example discussed here is simply a short-term memory
which can easily be implemented in neural tissue. The eligibility trace is shown
in Fig. 1.3B as short-term memory at the synapses from the node that supplies
the training signal.

The eligibility trace and the axional delay solves here the temporal credit
assignment problem. The weights of the input channels to the node that learns
the state value function depend on its delayed output and the primary reward
(reinforcement) signal r. The primary reinforcement signal is assumed to have
an excitatory effect on a node that mediates learning, whereas the prediction
node has an inhibitory effect on the node which mediates learning. This training
node therefore calculates the effective reinforcement signal of equation 1.26.
This effective reinforcement signal has to be conveyed to all the synapses of
the prediction node, where it has to be correlated with an eligibility trace
to produce the appropriate weight change proposed in eqn 1.25. This model
of reward learning is equivalent to the Rescorla–Wagner theory in classical
conditioning. The model can produce one-step ahead predictions of a reward
signal and corresponds to a particular choice of the state value function. The
effective reinforcement signal is zero when the activity of the prediction node
matches the primary reinforcement signal.

1.4.2 Temporal difference learning with a perceptron

Since we discussed so far only the one-step ahead prediction tasks, which is the
generally setting to which the Rescorla–Wagner model is applied, this corre-
sponds to a value function definition with γ = 0. The more general case with
longer horizons and a finite discount factor follows the above discussion of the
Bellman equations. That is, the optimal state value function V ∗ at time t− 1
is defined as

V ∗(t− 1) = r(t) + γr(t+ 1) + γ2r(t+ 2) + ...

= r(t) + γ[r(t+ 1) + γr(t+ 2) + ...], (1.27)

where the right hand side can be expressed again as a state value function.
This leads to the version of the Bellman exquation for the state-value function

r(t) + γV ∗(t)− V ∗ (t− 1) = 0. (1.28)

Of course, this is only true if we have a perfect prediction. If we do not have a
perfect prediction, then the equation does not hold. In this case we can again
minimize the temporal difference error

r̂(t) = r(t) + γV π(t)− V π(t− 1), (1.29)

which is analog to the SARSA algorithm in this classical conditioning setting.
This temporal difference should be used in the learning rule eqn 1.25 as effec-
tive reinforcement signal to update the weights. Compared with the temporal

1.4 Using function approximation with neural networks 13

delta rule (γ = 0), we only need the additional value V π(t). Fig. 1.3C shows
a possible neuronal implementation of a temporal difference learning, which
includes a fast side-loop with a decay factor that conveys the value γV π(t) to
the node that calculates the primary reinforcement signal.

1.4.3 TD(λ)

TD learning is solving credit assignment problem without long-term memory
at the expense of repeated exploration. This is likely most clear in the maze
example as the agent has to traverse the maze several times in order to ‘back
propagate’ the reward signal to previous states. The other extreme is to keep a
memory of all intermediate predictions of the reward predictor and then adjust
all of them when reward is received. To do this we consider a perceptron that
predicts values at a specific times in a sequence, Vt(xt), from input xt at time
t,

Vt(xt;w) ≈ Vt(xt). (1.30)

We can train this MLP with a gradient-descent methods on an objective func-
tion E. We considered here the total change of the weights for a whole episode
of m time steps by summing the errors for each time step. The error at each
time step is given by the square difference between predicted and actual reward.
This correspond to the objective function

E =

m∑
t=1

(r − Vt)2, (1.31)

for which the gradient-descent rule is given by

∆w = α

m∑
t=1

(r − Vt)
∂Vt
∂w

. (1.32)

One specific difference of this situation to the supervised-learning examples
before is that the reward is typically only received after several time steps in
the future at the end of an episode. One possible approach for this situation is
to keep a history of our predictions and make the changes for the whole episode
only after the reward is received at the end of the episode. Another approach
is to make incremental (online) updates by following the approach of temporal
difference learning and replacing the supervision signal for a particular time
step by the prediction of the value of the next time step. Specifically, we can
write the difference between the reward and the prediction at time step t as

r − Vt =

m∑
k=t

(Vk+1 − Vk). (1.33)

Using this in equation 1.32 gives

∆w = α

m∑
t

m∑
k=t

(Vk+1 − Vk)
∂Vt
∂w

(1.34)

= α

m∑
t=1

(Vt+1 − Vt)
t∑

k=1

∂Vk
∂w

, (1.35)

14 Reinforcement Learning

Which can be verified by writing out the sums and reordering the terms. Of
course, this is just rewriting the original equation 1.32. We still have to keep a
memory of all the gradients from the previous time steps, or at least a running
sum of these gradients.

While the rules 1.32 and 1.35 are equivalent, we also introduce here some
modified rules suggested by Richard Sutton. In particular, we can weight recent
gradients more than gradients in the more remote past by introducing a decay
factor 0 ≤ λ ≤ 1. The rule above correspond to λ = 1 and is thus called the
TD(1) rule. The more general TD(λ) rule is given by

∆tw = α(Vt+1 − Vt)
t∑

k=1

λt−k
∂Vk
∂w

. (1.36)

It is interesting to look at the extreme of λ = 0. The TD(0) rule is given by

∆tw = α(Vt+1 − Vt)
∂Vt
∂w

. (1.37)

This rule gives different results with respect to the original supervised learning
problem described by TD(1), but this rule is local in time and does not require
any memory. This TD(0) rule is actually equivalent to the original TD rule
when no reward is given in intermediate states. The TD(λ) algorithm can be
implementing with a multilayer perceptron when back-propagating the error
term to hidden layers.

1.4.4 Deep Q-learning

A nice example of the success of TD(λ) was made by Gerald Tesauro from the
IBM research labs and published in the Communications of the ACM March
1995 / Vol. 38, No. 3 with the title Temporal Difference Learning and TD-
Gammon. His program learned to play the game at an expert level. The follow-
ing is an excerpt from this article (see http://www.research.ibm.com/massive/tdl.html):

”Programming a computer to play high-level backgammon has been found to
be a rather difficult undertaking. In certain simplified endgame situations, it is
possible to design a program that plays perfectly via table look-up. However,
such an approach is not feasible for the full game, due to the enormous number
of possible states (estimated at over 10 to the power of 20). Furthermore,
the brute-force methodology of deep searches, which has worked so well in
games such as chess, checkers and Othello, is not feasible due to the high
branching ratio resulting from the probabilistic dice rolls. At each ply there
are 21 dice combinations possible, with an average of about 20 legal moves
per dice combination, resulting in a branching ratio of several hundred per ply.
This is much larger than in checkers and chess (typical branching ratios quoted
for these games are 8-10 for checkers and 30-40 for chess), and too large to
reach significant depth even on the fastest available supercomputers.”

At the time of TD-Gammon, the MLP with one hidden layer has been a
the state of the art, more elaborate models with more hidden layers have been
difficult to train. However, deep learning has no made major progress based on
several factors, including faster computers in form go GPUs, larger databases

1.5 Actor-Critic schemes and the basal ganglia 15

with lots of training example, the rediscovery of convolutional networks, and
better regularization techniques. The combination of deep learning with re-
inforcement learning has recently made mayor breakthroughs in AI sushi as
learning to play ATARI games and most recently that a deep learning system
called alphaGo won against a grandmaster of the Chinese board game of Go,
which has been considered previously one of the most challenging examples for
AI.

There are several aspects in these solutions which seems important to make
it possible to train such large networks. One is to find a good starting position
to generate valuable responses. That is, if one starts playing the games with
random weights it is unlikely to even get to a point were sensible learning can
take place. This, the alphaGo used supervised learning on expert data to train
the system initially, while the RL procedures could then go on and advance the
system to the point where it could outperform human players. A second well
known factor is that it is important to use frequent replay of episodes during
learning.

1.5 Actor-Critic schemes and the basal ganglia

We have contrasted above a critic, which can learn a value function and then
dictates the policy, and an actor which tries to search for optimal policies by
searching in the action space. In practice it has been shown that a combi-
nation of these systems works quite well as it combines the strength of both
worlds. That is, the learning of the actor should be guided by a critic, and only
making smaller changes in the actor instead of following entirely possibly large
fluctuations in the critic is also desirable.

Sutton and Barto have incorporated temporal difference learning into a pow-
erful control method called the actor–critic scheme, illustrated in Fig. 1.4. Note
the similarities of this control scheme to the inverse model controller outlined
in Fig. ??B. The critic is designed to predict the correct motor command for
accurate future actions and can thus supervise the motor command generator.
The motor command generator is called actor within this framework. The
adaptive critic estimates value functions and uses them to guide the actions of
the agent. This scheme has proven to be very useful in engineering applica-
tions such as controlling elevators or adjusting the parameters of a petroleum
refinery’s operation. Neural implementations have been suggested, and it has
been noted that there are some similarities with specific architectural features
in the basal ganglia.

16 Reinforcement Learning

Fig. 1.4 Adaptive critic controller.

Motor command
generator (actor)

Desired
 state

Controlled
 object

Sensory
system

 Motor
command

Actual
 state-

Afferent

Re-afferent

Critic

DisturbanceReinforcement
signal

The basal ganglia, which are known to be instrumental in the initiation of
motor commands, have many of the structural components required to imple-
ment an adaptive critic and to supervise actors that can control the initiation
of motor movements. The basal ganglia are a collection of five subcortical nu-
clei as illustrated in Fig. 1.5. They receive cortical and thalamic input mainly
through the putamen and the caudate nucleus, together called the striatum
which comprises the input layer of the basal ganglia. The information stream
then runs through the globus pallidus (with an internal and external segment)
to the major output layer, the substantia nigra pars reticulata. The internal
side-loop from the globus pallidus via the subthalamic nucleus is also impor-
tant for our next discussion. In addition, note that the substantia nigra pars
compacta projects back to the striatum with neurons that use dopamine as
neurotransmitter.

Thalamus

Cerebral cortex

Substantia nigra
()pars reticulata

pars compacta

Superior colliculus

Globus
pallidus

Putamen

Subthalamic
nucleus

Caudate
nucleus

Fig. 1.5 Anatomical overview of the
connections within the basal ganglia
and the major projections comprising
the input and output of the basal gan-
glia. [Adapted from Kandel, Schwarz,
and Jessell, Principles of neural sci-
ence, McGraw-Hill, 4th edition (2000).]

The information streams within the basal ganglia are thought to be segre-
gated (to a certain extent) within interleaved modules that are called matrix
modules and striosomal modules, respectively. A suggested implementation of
the actor–critic scheme in the basal ganglia is shown in Fig. 1.6. The input
layer of the basal ganglia is rich in spiny neurons (SP), which receive massive
cortical (C) connections. The spiny neurons in the striosomal module (SPs)
also receive projections from dopaminergic neurons (DA) in the substantia ni-
gra pars compacta (SNc) which synapse on to spines of spiny neurons in the
caudate and putamen. It is possible that dopaminergic input is able to alter
the efficiencies of specific cortical inputs that are marked with an eligibility
trace. The neurons shown in the basal ganglia are also inhibitory so that
the dopaminergic neurons in the SNc are inhibited by SPs activity. The sub-
thalamic side-loop, in contrast, disinhibits the DA, which can result in some
excitation of DA neurons proportional to the inputs from this side-loop and a
primary reinforcement signal. If, in addition, the side-loop is faster than the
direct SPs–DA influence, then it is possible that the striosomal module im-
plements the critic that minimizes the temporal difference, as discussed above
(compare Fig. 1.3C).

Cerebral cortex
(frontal)

ST

DAPD

ST

SPm SPs

Primary reinforcement

Basal ganglia

M
at

rix
 m

od
ul

e

Striosom
al m

odule

TH

F C CC

(actor) (critic)

Fig. 1.6 Actor–critic model of the
basal ganglia with cerebral cortex (C),
frontal lobe (F), thalamus (TH), sub-
thalamic nucleus (ST), pallidus (PD),
spiny neurons in the matrix module
(SPm), spiny neurons in the strioso-
mal module (SPs), and dopaminergic
neurons (DA). [Adapted from Houk,
Adams, and Barto, in Models of infor-
mation processing in the basal ganglia,
Houk, Davies, and Beiser (eds), MIT
Press (1995).]

Several experiments show signals of neural activities in the basal ganglia
that can be related to reinforcement learning. For example, work by Wolfram
Schultz has shown how activities of dopaminergic neurons in SNc relate well to
the temporal difference error in reinforcement learning. An example is shown
in Fig. 1.7. These neurons respond to an unexpected reward, but do not re-

1.5 Actor-Critic schemes and the basal ganglia 17

spond to a reward after the agent has learned to associate the reward with a
stimulus. The activity of the dopaminergic neurons in SNc is also transferred
when introducing an earlier predictive stimulus. Furthermore, these neurons
respond with decreased activity when an expected reward is not given. This
behaviour corresponds well to the effective reinforcement signal in the schemes
discussed above and simulated below. An example is also shown in Fig. 1.7
where reward was only given at the time of presenting Pattern 3. Before learn-
ing, the neuron which conveys the effective reinforcement signal responds only
at the time following the reward (the time Pattern 4 is presented), but the
response is transferred to the time of presenting Pattern 3 after learning. At
episode 50, a new pattern (Pattern 2) is introduced at the time step preceding
Pattern 3, and the neurons transfers the response to this pattern. The removal
of an expected reward leads to a negative value of the effective reinforcement
learning signal, not shown in the simulation.

Pattern 4

Pattern 3
Pattern 2

Episode
0 50 100

Stimulus B Stimulus A Reward

Stimulus A No reward

r^
Fig. 1.7 Activities of dopaminergic
neurons from Schultz and colleagues
[adapted Suri, Neural Networks 15:
523–533 (2002)] and results from sim-
ulations discussed below.

The similarities between reward responses of dopaminergic neurons in the
SNc and the effective reinforcement signal in temporal difference learning have
contributed largely to the hypothesis of reinforcement learning theories of the
basal ganglia. This part of the reinforcement system corresponds largely to
the critic in the control system. Specific implementations of actors in the basal
ganglia have been discussed much less in the literature. One of the earliest sug-
gestions was that the matrix module could implement the actor. Dopaminergic
neurons project to these spiny neurons (SPm) and could therefore alter the C–
SPm weights in a fashion similar to that in the C–SPs connections. The only
difference is that these neurons project to the internal segment of the pallidus
and the substantia nigra pars reticulata (SNr), which are thought to be the
major output layers of the basal ganglia. The output of the basal ganglia can,
in such a way, control the initiation of specific motor actions that are associated
with reward.

Cerebral cortex

state / action coding

Pallidum

action selection

Striatum

reward prediction

Thalam
us

SNc

Primary reinforcement

state action

Fig. 1.8 Q-learning scheme of the basal
ganglia [adapted from Doya, HFSP
Journal 1: 30–40 (2007)].

The classic proposal of an actor–critic implementation in the basal ganglia
discussed above leaves many open questions and some questionable assump-

18 Reinforcement Learning

tions. While there are still many open questions regarding the specific imple-
mentation of reinforcement learning in the basal ganglia and the more refined
role of the basal ganglia in brain processing, there is a wide consensus that
the basal ganglia do contribute to some form of reinforcement learning. More
recently, Q-learning has also been mapped on to basal ganglion functions in the
work of leading researchers such as Kenji Doya and Peter Dayan. An exam-
ple is illustrated in Fig. 1.8 where the striatum is hypothesized to calculate a
state-action value function, and the dopaminergic neurons in SNc calculate the
TD error that is used to update cortico-striatal connections. The state-action
value function is then used in the pallidum and thalamus for stochastic action
selection. Other researchers, such as Peter Redgrave and Kevin Gurney also
pointed out that the basal ganglia might have a large role in discovering novelty
actions, which are also essential in establishing task-relevant behaviour. This
area is a nice example where theoretical and experimental research strongly
benefit from each other.

While we concentrated our discussion of reinforcement learning in the brain
on the basal ganglia, it should not be forgotten that there are other areas in
the brain that have been associated with reinforcement learning, or at least as-
sociation of reward contingencies with specific motor actions. Some brain areas
that have been implicated with making reward associations are, for example,
the prefrontal cortex and the subcortical area called amygdala. Both areas
receive projections from many senses and are therefore placed strategically to
form associations between different modalities and reward contingencies. Bilat-
eral damage of the amygdala is known to considerably impair such associations.
Furthermore, it has been shown that neurons in the orbitofrontal cortex adapt
their response to stimuli after changing their reward associations. Dopaminer-
gic neurons also project into the frontal cortex so that reward mechanisms could
originate predominantly in the frontal cortex as opposed to the hypothesis of
the basal ganglia discussed above. Finally, there are also other neurotrans-
mitters and specific reward systems that might be important in reinforcement
learning. For example, serotonin is a neurotransmitter that has been associated
with the modulation of such things as mood, appetite, sexuality, and aversive
signals, which are all factors that can influence reward values and action selec-
tion. Also, human planning, as well as abilities to evaluate long-term goals, are
not yet covered with the simple reward associations used in the experiments
discussed here.

