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Preface

Only a few years ago it seemed like science fiction that cars would drive safely through
San Francisco by themselves, that computers could search photographs for content, or
that game consoles could ‘see’ your posture. The progress has been so rapid in recent
years that large companies like Google and Microsoft are not only taking notice but are
actively advancing and employing this field. Engineers have worked on these dreams
for decades, so what has made this enormous progress possible?

Traditional science and engineering, so successful in flying men to the moon and
building ever taller buildings, has long recognized that dynamic environments like city
traffic or human interactions are challenging for traditional methods. In a traditional
way of designing solutions, smart engineers use the laws of physics and mathematics to
predict future states so that the machine can execute manipulations as desired. But the
problem with dynamic and complex environments is that future states are difficult to
predict for several reasons. For example, sensors might be too inaccurate or information
processors or might be too slow to be able to predict environment sufficiently despite
measurements. Another problem is the sheer number of possible states that we might
have to consider.

Two major ingredients have been contributing to the recent success. The first is
the acknowledgment that the world is uncertainty. Making this the premise from the
outset has drastic consequences. For example, rather than following only the most
likely explanations for a given situation, keeping an open mind and considering also
other possible explanations has proven to be essential in systems that have to work in
a real world environment rather than only in very controlled lab environments. The
language of describing uncertainty, that of probability theory, has proven to be elegant,
and probability formalisms tremendously simplify arguing in such worlds. This book
is an introduction to the probabilistic formulation of machine learning.

The second ingredient for the recent breakthroughs is building system that adapt to
unforeseen events. In other words, we must build learning machines since the traditional
method of encoding appropriate responses to all future situations is impossible. Like
humans, machines should not be static entities that only blindly follow orders which
might be outdated by the time real situations are encountered. Although learning
machines have been studied for at least half a century, often inspired by human
capabilities, the field has matured considerably in recent years through more rigorous
formulations of early learning machines and the realization of the importance of
predicting previously unseen events rather than only memorizing previous events.
Machine learning is now a well established discipline within artificial intelligence.

The power of the probabilistic approach to machine learning can best be acknowl-
edged and experienced in the real world. We therefore chose to demonstrate and
illuminate the theoretical constructs with robotics environments. The Lego system was
chosen as it is not only one of the cheapest systems around, but the limitations of the
system compared to more elaborate robots provide provide a nice challenge for smart
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solutions over gloomy hardware. We also choose a high-level programming language
so that we can concentrate on algorithmic programming and minimize system-level
hacking.

Outline of this book

Chapter 1 provides some historical context of Artificial Intelligence, Machine Learn-
ing and Robotics. While the main scientific content of this course is Machine Learning,
we will explore this fascinating area with the help of robotics. Robots provide us with
data and uncertain environments that are typical of problems we are trying to solve.
We also outline already the three major Machine Learning paradigms, Supervised, Un-
supervised and Reinforcement learning so that we know what our targets are. Finally,
we introduce some of the basic tools we will be using. This includes the mathematical
construct of matrices, and the high-level programming environment called Matlab that
we can use to implement the algorithms discussed in this book.

In Chapter 2 we turn to the basic robotics tools that we will be using, the Lego
NXT robot kit that we will interface with the Matlab programming environment. This
chapter provides also more background and context to more traditional robotics issues.
These discussion do not only provide us with more tools to be used later, but also
allow us to practice some of the concepts with our system. Thus, the discussions
include an introduction to basic computer vision, how to describe motions of robots,
and introduces the concepts of feedback controllers.

In Chapter 3 we will review basic probability theory since this is – as we already
argued – a great language for describing uncertain sensors and environment. We will
apply such concepts to motion and sensor models in order to characterize the behaviour
of robots in a way that allows us to apply the concepts from probabilistic machine
learning in later chapters.

Chapters 4-6 focus on Unsupervised Learning and introduces the ideas and tools
that are central to most Machine Learning applications. Chapter 4 dives right down to
the root of Supervised Learning in terms of (probability density) function regression.
Chapter 5 dives into the Bayesian Learning world that will help us to solve an essential
problems in mobile robotics, that of localization. Chapter 6 then explains popular
learning machines such as Support Vector Machines and Deep Learning Networks.

In Chapter 7 we discuss unsupervised learning. This area includes clustering
and representational learning. While these concepts are less common in machine
learning applications, these techniques can provide a cutting edge for solving real
world problems.

Chapter 8 discusses some classical planing concepts including graph search and
some more direct robotics algorithms. This chapter provides the backdrop of the
discussions in the next chapter.

Chapter 9 is finally about reinforcement learning. This is an important learning
paradigm which generalizes semi-supervised learning to temporal environments. It
also provides a unifying language of adaptive and optimal control.

Finally, in Chapter 10, we discuss some non-traditional robotics that is inspired
by neuroscience and general theories of the mind.
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