
5 Probabilistic reasoning and Bayes
filtering

5.1 Multivariate generative models and probabilistic
reasoning

5.1.1 Graphical models

F A

We have so far only considered very simple hypothesis appropriate for the low
dimensional data given in the above examples. An important issues that has to be
considered in machine learning is that of generalizing to more complex non-linear
data in high dimension, that is, when many factors interact in a complicated way. This
topic is probably one of the most important when applying ML to real world data. This
section discusses a useful way of formulating more complicated stochastic models
with causal relations and how to use such models to argue (inference). Parameters
of such models must often be learned with supervised techniques such as maximum
likelihood estimation.

Let us consider high dimensional data and the corresponding supervised learning.
In the probabilistic framework, this means making a hypothesis for joint density
function of the problem,

p(y,x) = p(y, x
1

, x
2

, ...|✓), (5.1)

where y, x
1

, ... are random variables and ✓ represents the parameters of the model.
With this joint density function we could argue about every possible situation in the
environment. For example, we could again ask for classification or object recognition
by calculating the conditional density function

p(y|x) = p(y|x
1

, x
2

, ...; ✓). (5.2)

Of course, the general joint density function and even this conditional density function
for high dimensional problems have typically many free parameters that we need to
estimate. It is then useful to make more careful assumptions of causal relations that
restrict the density functions. The object recognition formulation above is sometimes
called a discriminative approach to object recognition because it tries to discriminate
labels give the feature values. Another approach is to consider modelling the inverse

p(x|y) = p(x
1

, x
2

, ...|y; ✓), (5.3)

This is called a generative model as it can generate examples from a class give a label.
To use generative models in classification or object recognition we can use Bayes’

| 97Multivariate generative models and probabilistic reasoning

rule to calculate a discriminative model. That is, we use class priors (the relative
frequencies of the classes) to calculate the probability that an item with features x
belong to a class y,

p(y|x; ✓) = p(x|y; ✓)p(y)
p(x)

. (5.4)

While using generative models for classification seem to be much more elaborate,
there are several reasons that make generative models attractive for machine learning.
For example, in many cases features might be conditionally independent given a label,
that is

p(x
1

, x
2

, ...|y) = p(x
1

|y) ⇤ p(x
2

|y) ⇤ (5.5)

where I have dropped the indication of the parameter vector to make the formula less
cluttered. Even if the independence does not hold strictly, this naive Bayes assumption
it is often useful and drastically reduces the number of parameters that have to be
estimated. This can be seen from factorizing the full joint density function with the
chain rule

p(x
1

, x
2

, ..., x
n

|y) = p(x
n

|y, x
1

, ...x
n�1

)p(x
1

, ..., x
n�1

|y) (5.6)
= p(x

n

|y, x
1

, ..., x
n�1

) ⇤ ... ⇤ p(x
2

|y, x
1

) ⇤ p(x
1

|y) (5.7)

=

nY

i=1

p(x
i

|y, x
i�1

, ...x
1

). (5.8)

But what if the naive Bayes assumption is not appropriate? Then we need to build more
elaborate models. Building and using such models have been greatly simplified with
graphical methods to build causal models that specify the conditional dependencies
between random variables (Pearl 2000). A well known example of one of the inventors
of graphical models, Judea Pearl, is shown in Fig.5.1. In such graphical models,
the nodes represent random variables, and the links between them represent causal
relations with conditional probabilities. In this case there are arrows on the links. This
is thus an example of a directed acyclic graph (DAG). The RBM discussed above is
an example of an undirected Bayesian network.

.001
P(B)

.002
P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

B
t
t
f
f

E
t
f
t
f

.95

.29

.001

.94

P(A|B,E)

A
t
f

.90

.05

P(J|A) A
t
f

.70

.01

P(M|A)

Fig. 5.1 Example of causal model a two-dimensional probability density function (pdf) and some
examples of marginal pdfs.

Probabilistic reasoning and Bayes filtering98 |

In this specific example, each of the five nodes stands for a random binary vari-
able (Burglary B={yes,no}, Earthquake E={yes,no}, Alarm A={yes,no}, JohnCalls
J={yes,no}, MaryCalls M={yes,no}). In general, a joint distribution of several vari-
ables can be factories in various ways following the chain rule mentioned before
(equations 5.6), for example as

p(B,E,A, J,M) = P (B|E,A, J,M)P (E|A, J,M)P (A|J,M)P (J |M)P (M).
(5.9)

In case of binary random variables we need 2

4

+2

3

+2

2

+2

1

+2

0

= 31 parameters to
specify the full joint density function. However, the specific model illustrated in Fig.5.1
specifies restricted causal relations between the random variables which represents a
specific factorization of the joint probability functions, namely

p(B,E,A, J,M) = P (B)P (E)P (A|B,E)P (J |A)P (M |A). (5.10)

In this case we only need 1+1+2

2

+2+2 = 10 parameters to specify all the knowledge
in the system. Example parameters for a specific case are include in conditional
probability tables (CPTs) that specify the conditional probabilities represented by
the links between the nodes. The graphical representation makes is very convenient to
specify a specific hypothesis about causal relations.

The graph structure of the graphical models make it also easy to do inference (draw
conclusions), for specific questions. For example, say we want to know the probability
that there was no earthquake or burglary when the alarm rings and both John and Mary
call. This is given by

P (B = f,E = f,A = t, J = t,M = t) =

= P (B = f)P (E = f,)P (A = t|B = f,E = f)P (J = t|A = t)P (M = t|A = t)

= 0.998 ⇤ 0.999 ⇤ 0.001 ⇤ 0.7 ⇤ 0.9
= 0.00062

Although we have a causal model where parents variables influence the outcome
of child variables, we can also use evidence from child variables to infer some possible
values of parent variables. For example, let us calculate the probability that the alarm
rings given that John calls, P (A = t|J = t). For this we should first calculate the
probability that the alarm rings as we need this later. This is given by

P (A = t) = P (A = t|B = t, E = t)P (B = t)P (E = t) + ...

P (A = t|B = t, E = f)P (B = t)P (E = f) + ...

P (A = t|B = f,E = t)P (B = f)P (E = t) + ...

P (A = t|B = f,E = f)P (B = f)P (E = f)

= 0.95 ⇤ 0.001 ⇤ 0.002 + 0.94 ⇤ 0.001 ⇤ 0.998 + ...

0.29 ⇤ 0.999 ⇤ 0.002 + 0.001 ⇤ 0.999 ⇤ 0.998
= 0.0025

We can then use Bayes’ rule to calculate the required probability,

P (A = t|J = t) =
P (J = t|A = t)P (A = t)

P (J = t|A = t)P (A = t) + P (J = t|A = f)P (A = f)

| 99Multivariate generative models and probabilistic reasoning

=

0.90.0025

0.90.0025 + 0.050.9975
= 0.0434

We can similarly apply the rules of probability theory to calculate other quantities, but
these calculations can get cumbersome with larger graphs. It is therefore useful to use
numerical tools to perform such inference. For example, a useful Matlab toolbox for
Bayesian networks can be downloaded at http://code.google.com/p/bnt/. The
Matlab implementation of the model in Fig.5.1 is implemented with this toolbox in
file www.cs.dal.ca/~~tt/repository/MLintro2012/PearlBurglary.m

ut-1

zt-1

xt-1

ut

z t

xt

ut+1

zt+1

xt+1

ut-2

z t-2

xt-2

Fig. 5.2 A temporal Bayesian model called the Hidden Markov Model with hidden states x
t

observations z
t

and external influences u
t

.

I mentioned already the importance of learning about temporal sequences (an-
ticipatory systems), and Bayesian Networks are easily extended to this domain. An
important example of such a Dynamic Bayesian Network (DBN) is a Hidden Markov
Model (HMM) as shown in Fig.5.2. In this model a state variable, x

t

is not directly
observed. This is therefore a hidden or latent random variable. The Markov condition
in this model means that the states only depend on situations in the previous state,
which can include external influences such described here as u

t

. T typical example is
a robot localization where we drive the robot with some motor command u

t

and want
to know the new state of the robot. We can use some knowledge about the influence of
the motor command on the system to calculate a new expected location, and we can
also combine this in a Baysian optima way with sensor measurement depicted as z

t

.
Such Bayesian models are essential in many robotics applications.

5.1.2 Inferred causation

While inference is an important application of causal models, inferring causality from
data is another area where causal models revolutionize scientific investigations. Many
traditional methods evaluate co-occurrences of events to determine dependencies, such
as a correlation analysis. However, such a correlation analysis is usually not a good
indication of causality. Consider the example above. When the alarm rings it is likely
that John and Mary call, but the event that John calls is mutually independent of the
event that Mary calls. Yet, when John calls it is also statistically more likely to observe
the event that Mary calls. Sometimes we might just be interested in knowing about
the likelihood of co-occurrence, for which a correlation analysis can be a good start,
but if we are interested in describing the causes of the observations, then we need
another approach. Some algorithms have been proposed for structural learning, such
as an algorithm called inferred causation (IC), which deduces the most likely causal

Probabilistic reasoning and Bayes filtering100 |

structure behind given data is.

5.1.3 Naive Bayes

One of the simplest Bayesian models is shown in Figure ??. As this model illustrates,
the random variables causing the state of the child process is assumed to be condition-
ally independent of each other. This is often the case at least to a first approximation
calculating the joined distribution in this case is computationally feasible. We will
illustrate this method on an data mining example.

In the following example we want to make a spam filter that classifies email
messages as either spam (y = 1) or non-spam (y = 0) emails. To do this we need first
a method to represent the problem in a suitable way. We chose here to represent a text
(email in this situation) as vocabulary vector. A vocabulary is simply the list of all
possible words that we consider, and the text is represented by this vector with entries
1 if the word can be found in the list or an entry 0 if not, e.g.

x =

0

BBBBBBBBBBBBBB@

1

0

0

.

.

.
1

.

.
0

1

CCCCCCCCCCCCCCA

a
aardvark
aardwolf

.

.

.
buy
.
.

zygmurgy

(5.11)

We are here only considering values 0 and 1 instead, for example, counting how
often the corresponding word appears. The difference is that each entry is a binomial
random variable and would be a multinomial in the other example, though the methods
generalize directly to the other case. Note that this feature vector is typically very high
dimensional. Let us consider here that our vocabulary has 50.000 word, which is a
typical size of common languages.

We now want to build a discriminative model from some training examples. That
is, we want to model

p(x|y) = p(x
1

, x
2

, ..., x
50000

|y). (5.12)

This is a very high dimensional density function which has 250.000�1 parameters (the
-1 comes from the normalization condition). We can factorize this conditional density
function with the chain rule

p(x
1

, x
2

, ..., x
50000

|y) = p(x
1

|y)p(x
2

|y, y
1

)...p(x
50000

|y, x
1

,, x
49999

). (5.13)

While the right hand side has only 50.000 factors, there are still 250.000�1 parameters
we have to learn. However, we no make a strong assumption namely that all the words
are conditionally independent in each text, that is,

p(x
1

|y)p(x
2

|y, y
1

)...p(x
50000

|y, x
1

,, x
49999

) = p(x
1

|y)p(x
2

|y)...p(x
50000

|y).
(5.14)

| 101Bayes Net toolbox

This is called the Naive Bayes (NB) assumption. Hence, we can write the conditional
probability as a factor of terms with 50.000 parameters

p(x|y) =
50000Y

i=1

p(x
i

|y). (5.15)

To estimate these parameters we can apply again maximum likelihood estimation,
which gives

�
j,y=1

=

P
m

i=1

true(x
(i)

j

= 1 ^ y(i) = 1)

P
m

i=1

true(y(i) = 1)

(5.16)

�
j,y=0

=

P
m

i=1

true(x
(i)

j

= 1 ^ y(i) = 0)

P
m

i=1

true(y(i) = 0)

(5.17)

�
y=1

=

P
m

i=1

true(y(i) = 1)

m
. (5.18)

The function true(a) returns a 1 if the expression a is true, and zero otherwise. Thus,
sum

i

true(a(i)) counts how many times the expression a is true for each training
example.

With these parameters we can now calculate the probability that email x is spam
as

p(y = 1|x) =
Q

m

i=1

�
i,y=1

�
y=1Q

m

i=1

�
i,y=1

�
y=1

+

Q
m

i=1

�
i,y=0

�
y=0

. (5.19)

In practice this often works well when the Naive Bayes assumption is appropriate,
that is, if there are no strong correlation between the features. Finally, note that there
is a slight problem if some of the words, say x

100

, are not part of the training set. In
this case we get an estimate that the probability of this work every occurring is zero,
�
100,y=1

= 0 and �
100,y=0

= 0, and hence p(y = 1|x) = 0

0

. A common trick, called
Laplace smoothing is to add one occurrence of this word in every case, which will
insert a small probability proportional to your training examples to the estimates,

�
j,y=1

=

P
m

i=1

1{x(i)

j

= 1 ^ y(i) = 1}+ 1

P
m

i=1

1{y(i) = 1}+ 2

(5.20)

�
j,y=0

=

P
m

i=1

1{x(i)

j

= 1 ^ y(i) = 0}+ 1

P
m

i=1

1{y(i) = 0}+ 2

. (5.21)

We will later compare the Naive Bayes classification with other classification methods.

5.2 Bayes Net toolbox
An Matlab implementation of various algorithms for inference, parameters estimation
and inferred causation is provided by Kevin Murphy in the Bayes Net toolbox5. We
will demonstrate some of its features on the burglary/earthquake example above.

5The toolbox can be downloaded at http://code.google.com/p/bnt.

Probabilistic reasoning and Bayes filtering102 |

The first step is to create a graph structure for the DAG We have five nodes. The
nodes are given numbers, but we also use variables with capital letter names to refer
to them. The DAG is then a matrix with entries 1 where directed links exist.
N=5;% number of nodes
B=1; E=2; A=3; J=4; M=5;
dag = zeros(N,N);
dag(B,A)=1;
dag(E,A)=1;
dag(A,[J M])=1;

The nodes represent discrete random variables with two possible state. We only discuss
here discrete random variables, although the toolbox contains methods for continuous
random variables. For the discrete case we have to specify the number of possible
states of each variable, and we can then create the corresponding Bayesian network,
% Make bayesian network
node_sizes=[2 2 2 2 2]; %binary nodes
bnet=mk_bnet(dag,node_sizes); %make bayesian net

The next step is to provide the numbers for the conditional probability distributions,
which are the conditional probability tables for discrete variables. For this we provide
the numbers in a vector according to the following convention. Say we specify the
probabilities for node 3, which is conditionally dependent on nodes 1 and 2. We then
provide the probabilities in the following order:

Node 1 Node 2 P(Node 3=X)
F F F
T F F
F T F
T T F
F F T
T F T
F T T
T T T

For our specific examples, the CPT are thus specified as
bnet.CPD{B} = tabular_CPD(bnet,B,[0.999 0.001]);
bnet.CPD{E} = tabular_CPD(bnet,E,[0.998 0.002]);
bnet.CPD{A} = tabular_CPD(bnet,A,[0.999 0.06 0.71 0.05 0.001 0.94 0.29 0.95]);
bnet.CPD{J} = tabular_CPD(bnet,J,[0.95 0.10 0.05 0.90]);
bnet.CPD{M} = tabular_CPD(bnet,M,[0.99 0.30 0.01 0.70]);

We are now ready to calculate some inference. For this we need to specify a specific in-
ference engine. There are several algorithms implemented, a variety of exact algorithm
as well as approximate procedures in case the complexity of the problem is too large.
Here we use the basic exact inference engine, the junction tree algorithm, which is
based on a message passing system.
engine=jtree_inf_engine(bnet);

While this is an exact inference engine, there are other engines, such as approximate
engines, that might be employed for large graphs when other methods fail.

| 103Temporal Bayesian networks: Markov Chains and Bayes filters

As an example of an inference we recalculate the example above, that of calculate
the probability that the alarm rings given that John calls, P (A = t|J = t). For this we
have to enter some evidence, namely that J = t, into a cell array and add this to the
inference engine,
evidence=cell(1,N);
evidence{J}=2;
[engine,loglik]=enter_evidence(engine,evidence)

We can then calculate the marginal distribution for a variable, given the evidence as,
marg=marginal_nodes(engine,A)
p=marg.T(2)

It is now very easy to calculate other probabilities.
The Bayesnet toolbox also includes routines to handle some continuous models

such as models with Gaussian nodes. In addition, there are routines to do parameter
estimation, including point estimates, such maximum likelihood estimation, and also
full bayesian priors. Finally, he toolbox includes routines to inferred causation through
structural learning.

Exercise:
In the above example, shown in Figure 5.1, calculate the probability that there was a
burglary, given that John and Marry called.

5.3 Temporal Bayesian networks: Markov Chains and
Bayes filters

In many situations we are interested in how things change over time. For this we
need to build time-dependent causal models, also called dynamic bayesian models
(DBNs). We will discuss here a specific family of such models in which the states at
one time, t, only depend on the random variables at the previous time, t � 1. This
condition is called a Markov condition, and the corresponding models are called
markov chains. A very common situation is captured in the example shown in Figure
5.3. In this example we have three time-dependent random variables called u(t), x(t),
and z(t). We used different grey shades for the nodes to indicate if they are observed
or not. Only u(t) and z(t) are observed, whereas x(t) is an un-observed, hidden or
latent variable. Such Markov chains are called Hidden Markov Models (HMMs).

The HMM shown in figure 5.3 capture the basic operation of a mobile robot in
which the variable u(t) represents the motor command at time t and the variable z(t)
represents sensor readings at time t. The motor command is the cause that the robot
goes into a new state x(t). The problem illustrated in the figure is that the new state of
the robot, such as its location or posture, can not be observed directly. In the following
we will specifically discuss robot localization, where we must infer the possible
state from the motor command and sensor reading. We have previously used a state
sheet to ‘measure’ the state (location) of the tribot with the light sensor (see section
??). The model above allows us a much more sophisticated guess of the location by

Probabilistic reasoning and Bayes filtering104 |

ut-1

zt-1

xt-1

ut

z t

xt

ut+1

zt+1

xt+1

ut-2

z t-2

xt-2

Fig. 5.3 A hidden markov model (HMM) with time dependent state variable x, motor control u
and sensor readings z.

taking not only the current reading into account, but by combining this information
with our previous guess of the location and the knowledge of the motor command.
More specifically, we want to calculate the believe of the state, which is a probability
(density) function over the state space

bel(x
t

) = p(x
t

|bel(x
0

), u
1:t

, z
1:t

), (5.22)

give an initial believe and the history of motor command and sensor reading. This
believe can be calculated recursively from the previous believes and the new infor-
mation, which is a form of believe propagation. It is often convenient to break this
process down into calculating a new prediction from the previous believe and the
motor command, and then to add the knowledge provided by the new sensor reading.
To predict of probability of a new state from the previous believes and the current
motor command, we need to marginalize over the previous states, that is, we need to
multiply the previous believe with the probability of the new state, given the previous
state and motor command, and to sum (integrate) over it,

pred(x
t

) =

1

N
x

X

x

t�1

p(x
t

|u
t

, x
t�1

)bel(x
t�1

), (5.23)

where N
x

is the number of states. This prediction can be combined with the sensor
reading to give a new believe,

bel(x
t

) =

p(z
t

|x
t

)pred(x
t

)P
x

t

p(z
t

|x
t

)pred(x
t

)

, (5.24)

where we included the normalization over all possible states to get a number represent-
ing probabilities. This is called Bayes filtering. With a Bayes filter we can calculate
the new believe from the previous believe, the current motor command, and the latest
sensor reading. This is the best we can do with the available knowledge to estimate
the positions of a system. The application of Bayes filtering to a robot localization
is also called Markov localization and is illustrated in Figure 5.4. The limitation in
practice is often the that we have to sum (integrate) over all the possible states, which
might be a very large sum if it has to be done explicitly. In some cases we can do this
analytically, as shown in the next sections.

| 105Temporal Bayesian networks: Markov Chains and Bayes filters

Fig. 5.4 A illustration of markov localization [from Probabilistic model, Thrun, Burgard, Fox,
MIT press 2006].

5.3.1 The Kalman filter

We have, so far, only assumed that our process complies with the Markov condition
in that the new state only depends on the previous state and current motor command.
In many cases we might have a good estimate of the state at some point with some
variance. We now assume that our believes are Gaussian distributed,

p(x
t�1

) =

1

(

p
(2⇡))n

p
(det(⌃

t�1

)

exp(�1

2

(x
t�1

� µ
t�1

)

T⌃�1

t�1

(x
t�1

� µ
t�1

)).

(5.25)
We also consider first the case where the transition probability p(x

t

|u
t

,x
t�1

) is linear
in the previous state and the motor command, up to Gaussian noise ✏

t

,

Probabilistic reasoning and Bayes filtering106 |

¯x
t

= A
t

x
t�1

+B
t

u
t

+ ✏
t

; ✏
t

⇠ N(0,Q
t

), (5.26)

where A
t

and B
t

are time dependent matrices. The gaussian noise ✏
t

has thereby
mean zero and covariance Q

t

. This setting is very convenient since the posterior
after moving a Gaussian uncertainty in such a linear fashion is again a Gaussian. The
believe after incorporating the movement is hence a Gaussian probability over states
with parameters

µ̄
t

= A
t

µ
t�1

+B
t

u
t

(5.27)
¯⌃
t

= A
t

⌃
t�1

AT

t

+Q
t

. (5.28)

We now need to take the measurement probability into account, P (z
t

| ¯x
t

), which we
also assume to be linear in its argument up to a Gaussian noise �

t

,

z
t

= C
t

¯x
t

+ �
t

; �
t

⇠ N(0,R
t

). (5.29)

With this measurement update, we can calculate our new state estimate, parameterized
by µ

t

and Sigma
t

, as

¯K
t

=

¯⌃
t

CT

t

(C
t

¯⌃
t

CT

t

+R
t

)

�1 (5.30)
µ
t

= µ̄
t

+K
t

(z
t

�C
t

µ̄
t

) (5.31)
⌃

t

= (I�K
t

C
t

)

¯⌃
t

, (5.32)

where I is the identity matrix.
The basic Kalman filter makes several simplifying assumptions such as Gaussian

believes, Gaussian noise, and linear relations. There are many generalizations of this
method. For example, it is possible to extend the method to non-linear transformations
while still demanding that the posteriors are Gaussian. While this introduces some
errors and is this only an approximate method, this extended Kalman filter (EKF)
is often very useful in practical applications. Also, there are several non-parametric
methods such as particle filters.

Exercises:

1. A mobile robot is instructed to travel 3 meters along a line in each time step.
The true distance traveled is gaussian distributed around the intended position
with standard deviation of 2 meters; the positions sensors are also unreliable
with Gaussian that has a standard deviation of 4 meters; What is the average
absolute difference between the true position and the estimated position when
using only the sensor information, only the information inherent in the motor
command, and both sources of information?

2. The lego robot is traveling along a line that has dark stripes at various positions.
These distance between the stripes stripes are doubling for each consecutive stipe
(d(i) = 2 ⇤ d(i � 1)). Estimate the position of the Lego tribot when traveling
straight ahead if the robot is positioned at a random initial position.

