
CSCI 4155/6505 (2016): Machine
Learning

Thomas P. Trappenberg
Dalhousie University

Acknowledgements

These lecture notes have been inspired by several great sources, which I commend as
further readings. In particular, Andrew Ng from Stanford University has several lecture
notes on Machine Learning (CS229) and Artificial Intelligence: Principles and Tech-
niques (CS221). His lecture notes and video links to his lectures are available on his
web site (http://robotics.stanford.edu/⇠ang). Excellent book on the theory
of machine learning are Introduction to Machine Learning by Ethem Alpaydin, 2nd
edition, MIT Press 2010, and Pattern Recognition and Machine Learning by Christo-
pher Bishop, Springer 2006. The standard book on RL is Reinforcement Learning:

An Introduction by Richard Sutton and Andrew Barto, MIT press, 1998. The standard
book for AI, Artificial Intelligence: A Modern Approach by Stuart Russell and Peter
Norvig, 2nd edition, Prentice Hall, 2003, does also include some chapters on Machine
Learning. Finally, the book by Kevin Murphy, Machine Learning: A Probabilistic
Perspective is highly recommended for more in-depth studies.

Several people have contributed considerably to this lecture notes. In particular I
would thank my PhD students Paul Hollensen and Patrick Connor.

Contents

1 Introduction 1
1.1 The basic idea behind supervised ML 1
1.2 Training, validating and testing 2
1.3 Unsupervised and reinforcement learning 4
1.4 Causal learning, overfitting and regression 6

2 ML programming with Python 10
2.1 General scientific programming in Python 10
2.2 Cross validation example from Intro 13
2.3 Classification with support vector machine using scikit-

learn 15
2.4 Other classification methods including MLP with Ten-

sorflow 16

3 MLP 19
3.1 The historical threshold perceptron 19
3.2 The sigmoid perceptron 21
3.3 Multilayer perceptron (MLP) 25

4 Support Vector Machines (SVM) 29
4.1 Linear classifiers with large margins 29
4.2 Soft margin classifier 32
4.3 Regularization and parameter tuning 34
4.4 Statistical learning theory and VC dimension 35
4.5 Support Vector Regression 37
4.6 Implementation 38

1 Introduction

1.1 The basic idea behind supervised ML

In the sense of its words, Machine Learning (ML) is the area that tries to build intelligent
machines by defining a machine with specific operational abilities and training it with
examples to perform specific tasks. This might sound like a niche area in science
and you might wonder why there is now so much interest in this discipline, both
academically and in industry. The reason is that ML is really about modeling data that
provide the basis of advanced object recognition and data mining and is hence the
analytical engine in areas such as data science, big data, data analytics and science in
general.

ML has a long history with traces far back in time. One of the first recognized
exciting realizations of the promise of learning machines came in the late 1950s and
early 1960s with work like Arthur Samuel’s self-learning checkers program and Frank
Rosenblatt’s perceptron. A second wave came in the 1980s and 90s with multilayer
perceptrons and recurrent networks. And since 2006 we have a third wave of neural
networks, that of deep learning which we will discuss more in this course.

ML is not restricted to neural networks. Indeed, the development of statistical
machine learning and Bayesian networks has influenced the field strongly in the last
20 years and has been essential in much of its progress as well as in the deeper
understanding of machine learning. This course will hence also introduce these more
general ideas.

It is common and somewhat useful to distinguish three areas of machine learning,
that of supervised learning, unsupervised learning, and reinforcement learning. Much
of what is currently most associated with the success of ML is supervised learning,
sometimes also called predictive learning. The basic task of supervised learning is that
of taking as input a vector x of measurements, such as some medical measurements
or robotic sensor data, and predicting an output value y such as the state of a patient’s
health or the location of obstacles. Note that we follow here a common notation of
denoting a vector, matrix or tensor with bold faced letters, whereas we use regular
fonds for scalars. We usually call the input vector a feature vector as the components
of this are typically a set feature values of an object. The output could be also a
multi-dimensional object such as a vector or tensor itself.

Mathematically we can denote the relations between the input and the output as a
function

y = f(x). (1.1)

We consider the function above as a description of the true underlying world, and
our main goal is to find out this precise relation. In the above formula we considered
a single output value and several input values for illustration purposes, although we

Introduction2 |

see later that we can extend this readily to multiple output values. This would then
correspond to a vector function.

The challenge for machine learning to find this function or at least to approximate it
sufficiently. Machine learning has several approaches to deal with this. One approach
that we will predominantly follow for much of the course is to define a general
parameterized function

ŷ =

ˆf(x; ✓). (1.2)

This formula describes that we make a parameterized hypothesis in which we specified
a function ˆf that depend on parameters to approximate the desired input-output relation.
This function is called a model. The model is generally an approximation of a system to
study specific aspects of its behaviour. This often means that not all of the underlying
world has to be captured in depth. For example, a building engineer might make
a model of a bridge to tests its static without including the ascetic aspects that an
architect might emphasize in a model. In our context the word model is synonymous
with approximation.

We have indicated that this model is an approximation of the desired relation by
using a hat symbol. However, we frequently drop this symbol when the relation is clear
from the context, for example when the function contains parameters. The parameters
are specified in this function by including the parameter as vector ✓ behind a semicolon
in the function arguments. More appropriately, the formula defines a set of functions
in the parameter space. A good solution represented by a point in this parameter space
is an approximation that can be used for predicting output values (labels) ŷ for specific
input values.

We will later go one step further by considering the more general case when we
might not be able to predict an exact value but at least the probability that a certain value
will occur. Indeed, it is quite common that the process under investigation includes
stochastic (random) or unknown factors. True underlying world model is thus better
described by a probability density function

P (Y = y|x). (1.3)

Formulating ML learning in a probabilistic context has been most useful and provides
us with the formalization that created the most insight into this field. In the stochastic
framework we are then modelling a density function

p(ˆY = ŷ|x; ✓). (1.4)

For now we will follow the function approximation formalization, but we return to the
probabilistic framework later.

1.2 Training, validating and testing

Coming up with the right parameterized approximation function is the hard problem
in machine learning, and we will later discuss several choices. There are also methods
to systematically develop the approximation function from the data, generally called
non-parametric methods. However, we assume for now that we have a parameterized

| 3Training, validating and testing

approximation function. The question is then how we determine good parameters. This
is where the learning process comes in.

In supervised learning we must be given some examples of input-output relation
from which we learn. We can think about these examples as given by a teacher. The
teacher data called the training set are used to directly determine the parameters of
the model. We can denote this training set as

{x(i), y(i)}, (1.5)

where the superscript i labels the specific training example. These indices are enclose
in brackets to not confuse them with exponents.

There are different ways – usually called a training algorithm – to determine the
parameters of a model. Let us illustrate this with an example where we assume we
have a single input feature, x, and we hypotheses that the output y is linearly related
to x. Mathematically we write this linear model as

ŷ = ax+ b, (1.6)

where a the slope of the linear function and b is the y-axis intercept or bias of this
function. Using the training data to determine good parameters is also called regression
in this context.

y

x

Fig. 1.1 A form of linear regression of data and cross-validation.

Let us illustrate an example regression procedure (there are different possible
regression procedures) with the help of an example. For this we choose the true
underlying model

y = 2x+ 3 + ⌘, (1.7)

where ⌘ is a normal distributed random variable. We added this random addition to the
perfect linear model to include right away a typical challenge in ML, that of having
imprecise measurements and hence noisy training data. The other way to interpret the
model is actually to accept the ‘world’ as stochastic and hence we are considering a
stochastic model. In any case, from this model we chose some data points by sampling,

(0, 4.56)(1, 4.27), (2, 7.81), (3, 9.33) (1.8)

Introduction4 |

We now make the assumption of a parameterized linear function

ŷ = ax+ b, (1.9)

with two parameters a and b, and use a simple method to determine the two parameters.
As we have a linear equation with only two unknowns, we only need two data points
to determine their values. Using the two first data points as emphtraining set we get

a =

y(2) � y(1)

x(2) � x(1)

= �0.29 (1.10)

b = y(1) � ax(1)

= 4.56 (1.11)

This is not a very good agreement with the ideal values of a = 2 and b = 3. How about
using the first and last data point as training set. The estimate of the y-intercept stays
the same, but the slope estimation becomes a = 1.59 which is already much better.

But how would we know what the best solution is when we do not already know
the solution? The answer is a procedure called cross validation where we use the data
not used for training to validate the goodness of prediction on other data. Thus, the data
not used directly to estimate the model parameters are called the validation set. We
chose here to evaluate the goodness of the model with the mean square error (MSE)
on the data not used for training

MSE =

1

N
val

NvalX

i=1

(ŷ � y)2, (1.12)

where N
val

is the number of validation data. If we calculate the MSE for all possible
data combinations we can choose as final estimation the estimation that leads to the
smallest MSE of the unseen validation data points.

Cross validation is generally used to tune the hyper-parameters. Hyper-parameters
are parameters of the learning algorithms. In our specific examples these are the choice
of which data points to choose. Later we will discuss other learning algorithms that
have hyper-parameter like a learning rate or the number of learning steps.

Finally, the ultimate test is using data that where not given to us during a learning
phase to test the prediction of the model with the parameters that we estimated during
the learning and cross-validation procedure. These data that are usually not given to
the researchers during a training phase is recalled the test set. It is essential to be very
clear about the differences between the training set, the validation set and the test set.

1.3 Unsupervised and reinforcement learning

Up to now we have discussed supervised learning where a teacher provides detailed
examples of what the output of a machine should be. In reinforcement learning there
is still some feedback from a teacher or the environment in the form of indicators
that show how desirable the outputs of the learner is. This is often described as
reward or punishment. However, the learning process requires some exploration as the
learner must find the required action to attain a rewarding position. Such a learning

| 5Unsupervised and reinforcement learning

requirement represents a common task in robotics and human learning, although a
supervised learning system could be in itself a component of such a learning agenda,
for example in the required vision system.

The last basic category of unsupervised learning is another important type of
learning. This the of learning is more directly related to supervised learning except
that the training data sets has no labels, That is, we are for example given a large data
set of images but without detailed descriptions what the photographs represent. So one
might ask how this can be of any use. However, there is a lot of information in the
pictures itself as they give examples of how natural images look like or that there are
usually edges and a certain distribution of colors. In other words, we can learn a lot
about the statistics of the feature values from a large collection of unlabelled examples.

Fig. 1.2 A form of linear regression of data and cross-validation.

Some knowledge of the statistics of data is important to guide good representations
of the data. We will se later that a good representation of data is a key element of solving
mapping problems such as object recognition. Indeed, we can view the success of
deep learning as the result of learning good layers of representations between the
raw sensory input and the desired semantic space. It is therefore representational
learning based on unsupervised and supervised learning that had build the foundation
of much progress. For example, Figure 1.2 shows a famous work of Geoff Hinton
and Ruslan Salakhutdinov published in Science 2006 of a neural network with several
layers that transforms an input image to itself. At first it uses some unsupervised
learning techniques that learns to reconstruct each input layer with a hidden layer.
Such a network is called a restricted Boltzmann machine. Next we stack these layers
on top of each other and train it like a supervised learning problem where the desired

Introduction6 |

output (label) is the image itself. This is called an autoencoder. While the ability of
translating an input image to itself might be questionable, the interesting part of such an
autoencoder is that it has a number of representational layers in-between and that it has
a bottleneck in the middle. This layer provides us with a compressed representation
that is also interesting as it has been shown that it provides an interesting similarity
measure between different inputs that can represent some semantic components. It is
this kind of learning that provides a stream to more ’intelligent’ processing.

1.4 Causal learning, overfitting and regression

I would like to close the introductory overview with on more concept that is central
in machine learning. For this we go back to the supervised learning of repression. As
mentioned previously finding the right parameterized function is somewhat difficult.
There is an important area of causal learning that tries to provide specific probabilistic
models of the components that provide the necessary foundations of the inference en-
gine. Inference here means a system that can ‘argue’ about a solution in a probabilistic
sense. Such systems fall generally in the domain of Bayesian learning, and we will
include some introduction to this important systems in this course. Figure 1.3 shows
an famous example form Judea Pearl, one of the inventors of this important modelling
framework.

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

Fig. 1.3 Judea Pearl and causal modeling

Above we have discussed a case where we assumed a linear function, but regression
with more general non-linear functions brings another level of challenges. An example
of data that do not follow a linear trend is shown in Fig.1.4A. There, the number of
transistors of microprocessors is plotted against the year each processor was introduced.
This plot includes a line showing a linear regression, which is of course not very good.
It is however interesting to note that this linear approximation shows some systematic
deviation in some regional under and over estimation of the data. This systematic
deviation or bias suggest that we have to take more complex functions into account.
Finding the right function is one of the most difficult tasks, and there is not a simple
algorithm that can give us the answer. This task is therefore an important area where
experience, a good understanding of the problem domain, and a good understanding
of scientific methods are required.

| 7Causal learning, overfitting and regression

1970 1980 1990 2000 2010ï���

0

���

1

���

2

��� x 109

Year of introduction

lo
g(

N
um

be
r o

f t
ra

ns
is

to
rs

)

1970 1980 1990 2000 2010�

10

��

20

��

Year of introduction

lo
g(

N
um

be
r o

f t
ra

ns
is

to
rs

) VORSH ����

A. Processor data B. Logarithm of processor data

n=10

n=2
n=4

Fig. 1.4 Data showing the number of transistors in microprocessors plotted against the year they
were introduced. (A) Data and some linear and polynomial fits of the data. (B) Logarithm of the
data and linear fit of these data.

It is often a good idea to visualize data an various ways since the human mind is
often quite advanced in ‘seeing’ trends and patterns. Domain-knowledge thereby very
valuable as specialists in the area from which the data are collected can give important
advice of or they might have specific hypothesis that can be investigated. It is also
good to know common mechanisms that might influence processes. For example, the
rate of change in basic growth processes is often proportional to the size of the system
itself. Such an situation lead to exponential growth. (Think about why this is the case).
Such situations can be revealed by plotting the functions on a logarithmic scale or
the logarithm of the function as shown in Fig.1.4B. A linear fit of the logarithmic
values is also shown, confirming that the average growth of the number of transistors
in microprocessors is exponential.

But how about more general functions. For example, we can consider a polynomial
of order n, that can be written as

y = ✓
0

x0

+ ✓
1

x1

+ ✓
2

x2

+ ...+ ✓
n

xn (1.13)

We can again use a regression method to determine the parameters from the data by
minimizing the LMS error function between the hypothesis and the data. The LMS
regression of the transistor data to a polynomials for orders n = 2, 4, 10 are shown in
Fig.??A as dashed lines.

A major question when fitting data with fairly general non-linear functions is the
order that we should consider. The polynomial of order n = 4 seem to somewhat fit
the data. However, notice there are systematic deviations between the curve and the
data points. For example, all the data between years 1980 and 1995 are below the
fitted curve, while earlier data are all above the fitted curve. Such a systematic bias is
typical when the order of the model is too low. However when we increase the order,
then we usually get large fluctuations, or variance, in the curves. This fact is also
called overfitting the data since we have typically too many parameters compared to
the number of data points so that our model starts describing individual data points
with their fluctuations that we earlier assumed to be due to some noise in the system.

Introduction8 |

This difficulty to find the right balance between these two effects is also called the
bias-variance tradeoff.

The bias-variance tradeoff is quite important in practical applications of machine
learning because the complexity of the underlying problem is often not know. It then
becomes quite important to study the performance of the learned solutions in some
detail. A schematic figure showing the bias-variance tradeoff is shown in Fig.1.5. The
plot shows the error rate as evaluated by the training data (dashed line) and validation
curve (solid line) when considering models with different complexities. When the
model complexity is lower than the true complexity of the problem, then it is common
to have a large error both in the training set and in the evaluation due to some systematic
bias. In the case when the complexity of the model is larger than the generative model
of the data, then it is common to have a small error on the training data but a large
error on the generalization data since the predictions are becoming too much focused
on the individual examples. Thus varying the complexity of the data, and performing
experiments such as training the system on different number of data sets or for different
training parameters or iterations can reveal some of the problems of the models.

Error on validation set

Error on test set

Model complexity

Er
ro

r

Fig. 1.5 Illustration of bias-variance tradeoff.

Deep neural networks are a form of high dimensional non-linear fitting function,
and preventing overfitting is therefore a very important component in deep learning.
Deep networks have many free parameters, and large data sets (big data) has therefor
been important for the recent progress in this area in combination with other techniques
to prevent overfitting such as a technique called dropout that we will discuss later. In
general on can think about techniques to prevent overfitting as restricting the possible
range of the parameters. Indeed, learning from data already represent providing in-
formation about the values of the parameters, and restricting such ranges further is a
key element in machine learning. This are is generally discussed under the heading of
regularization.

Machine learning methods are often easy to apply through application programs
that implement these techniques. This is good news. However, a deeper understanding
of the methods is necessary to make these applications and their conclusion appropriate.
The machine learning algorithms will come up with some predictions, but if these
predictions are sensible is important to comprehend and evaluate. Machine learning

| 9Causal learning, overfitting and regression

education needs therefore to go beyond learning how to run an application program, and
this course thrives to find a balance between practical applications and their theoretical
foundation.

2 ML programming with Python

This chapter is a brief introduction to scientific programming with the Python pro-
gramming environment and more specific examples of using ML libraries. The basic
idea behind this chapter is to jump right away into some examples. So we will inten-
tionally only cover some essential basics to keep us going. We will continue to refine
programming issues throughout the course and will talk about the science behind the
algorithms later.

2.1 General scientific programming in Python

2.1.1 Resources and installation

Python is a high level programming language that gains increasing popularity in the
machine learning community (Matlab has been dominating before). We assume some
familiarity with programming concepts and concentrate on the specific environment
and supporting libraries for this class. A comprehensive documentation and tutorials
are available at https://www.python.org. Also, more specific resources for scientific
computing with Python are:
http://docs.scipy.org/doc/numpy-dev/user/quickstart.html

http://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html

http://www.scipy-lectures.org/index.html

http://matplotlib.org/users/beginner.html

We will be using the Ubuntu operating system with Python 3 and supporting
programs. An image with these components is provided so that you can install this on
your own computer or use computers in our faculty. Please see the helps desk for any
problems with the installation.

2.1.2 The Spyder programming environment

We will be using a programming environment called Spyder that provides a graphical
user interface to basic tools such as an editor and an python interpreter. Start Spyder
and you should see the programing environment similar to the one shown in Figure
2.1. On the left is a editor window in which we can write the program. On the right is
the console that executes and interpreted the code.

2.1.3 Main programming constructs

The following lines of course are intended to show the syntax of the basic program-
ming constructs that we need in this course. We will be using Python as a scientific

| 11General scientific programming in Python

Fig. 2.1 The Spyder programming environment for Python.

programming language, and we will always import the pylab library that includes a lot
of useful functions.

from p y l a b import ⇤

Next we consider the basic data types that we are using. We are mainly concerned
here with numerical data of which a scalar is the simplest example,

b a s i c da ta t y p e s

s c a l a r =4
p r i n t (s c a l a r)

Note that we can include comment lines with the hashtag symbol. We also included a
print function that will report the value of the variable scalar that we defined here.
Note that the type of the variables are dynamically assigned in python.

Most of the time we need to work on a large collection of data so that we need a
contract to access the data collection. For we use some form of lists. There are slightly
different concepts of such constructs in python. The basic one dimensional list if given
by enclosing a semicolon-separated list in square brackets such as

l i s t = [1 , 2 , 3]

However, basically need to perform well defined mathematical operations with these
list, which makes these one dimensional list formally a vector. The basic data structure
for a collection of data is usually called an array in computer science. Thus, the
mathematical concept of a vector is a one-dimensional array with some operations
defined to it. To confuse this matter a bit more, we will use the numpy constrict of
an array to implement a vector. bumpy is a collection of numerical functions that is
included in pylab. The bumpy function array() turns a Python list into a vector,

v e c t o r = a r r a y ([1 , 2 , 3])
p r i n t (v e c t o r)
p r i n t (v e c t o r [1])

ML programming with Python12 |

As shown in the last line, we can access an element of the array with indices in square
brackets, and the first element in an array has the index 0.

Of course, we can generalize such data collections to higher dimension arrange-
ments. For example, a two dimensional array with the appropriate definition of math-
ematical operations is called a matrix and can be defined and accessed in python
like

m a t r i x = a r r a y ([[1 , 2 , 3] , [4 , 5 , 6]])
p r i n t (m a t r i x)
p r i n t (m a t r i x [1] [2])

Corresponding mathematical constructs in higher dimensions are called a tensor that
we will talk about later. A basic matrix multiplication, also called a dot product, is
implemented as function dot(a,b) and in Python 3 also as operator @,

m a t r i x 2 = a r r a y ([[5 , 5 , 6] , [7 , 8 , 9]])
r e s u l t = m a t r i x @ m a t r i x 2 . T
p r i n t (r e s u l t)

So far we have discussed the basic data types that we need. Besides these numerical
data ties there are of course others such as logical or characters. Please consult Python
documentation for these data types when needed. We now mention three more basic
programming constructs, that of loops, logical statements, and functions.

To loop through some code one can use the following construct,

f o r i in r a n g e (4) :
p r i n t (i)

which starts at i=0 and goes in steps of one until i=3. Note that Python is sensitive to
the code position; the indented code represents the block of statements executed inside
the loop.

A conditional statement takes the form

i f s c a l a r <1:
p r i n t (" t r u e ")

e l s e :
p r i n t (" f a l s e ")

Again note the indentation to specify the block of code for each condition.
To structure code better, specifically to define program constructs that can be

reused, we have the option to define functions like

def f unc (arg1 , a rg2 = 1 0) :
a r g = a rg 1 + a rg 2
re turn a r g ;

Variables are passed by reference.
One final example of basic programming we need is that of plotting graphs. Plotting

graphs is a useful scientific tool, and an example of a basic line plot can is given in the
following code.

p l o t t i n g

| 13Cross validation example from Intro

x= a r a n g e (1 0 0) #same as a r r a y (range (1 0))

y= s i n (0 . 1 ⇤ x)
p l o t (x , y)

When you summit plots in an assignment or paper, you always need axis labels to
know what is plotted. This can be done with

x l a b e l (" x ")
y l a b e l (" y ")

Exercises

1. Write a Python function that takes a character string and prints out the character
string in reverse order.

2. Write a Python program that uses 3-dimensional plotting routines to plot a two
dimensional Gaussian function.

3. more

2.2 Cross validation example from Intro

To practice Python programming and to deepen our understanding of cross validation,
we will now review the program that was used to produce the linear model with cross
validation of the example.

In the code below we start by generating the training set consisting of 4 data points
that are derived from a line y = 2x+ 3 with added Gaussian noise,

from p y l a b import ⇤
t r a i n i n g s e t

n=4
x= a r r a y (r a n g e (4)) ; y=2⇤x+3+ randn (n)
p l o t (x , y , ’⇤ ’)

For the learning tasks we chose a linear model ŷ = ax + b, see it as a wise choice,
with two parameters, the slope a the the intercept b. Our task is now to determine the
values for these parameters from the data. Since we have only two unknown we only
need two data point to determine, so let us choose the first two,

one example

a =(y [1]�y [0]) / (x [1]�x [0])
b=y [0]� a⇤x [0]
y h a t =a⇤x+b
p l o t (x , yha t , ’b��’)
y t r u e =2⇤x+3
p l o t (x , y t r u e , ’g�’)

We plotted here this specific solution in black and well as the best possible solution
in green which we know as we know what the parameters were that have been used

ML programming with Python14 |

to generate the data and also since the Gaussian noise is unbiased (symmetric around
zero)

Of course, this solution is only one possible solution since we could have used any
other pair to determine the parameters. Indeed, we should try out all and use all the
remaining points to see how good one specific solution will predict the reminder. This
is exactly the essence of cross validation.

To determine all the possible combination we use a preferred function from the
itertools collection,

c r o s s v a l i d a t i o n

import i t e r t o o l s
c = l i s t (i t e r t o o l s . c o m b i n a t i o n s (x , 2))

The list c contains now all possible pairs. We then loop over all the pairs and determine
the parameters for each choice, and also calculate the error for predicting the other
data points not used in the determination of the parameters,

t r y o u t a l l p o s s i b l e p a i r s

e r r o r = []
f o r i in r a n g e (l e n (c)) :

t r a i n f o l d

k=c [i] [0]
l =c [i] [1]
a =(y [l]�y [k]) / (x [l]�x [k])
b=y [k]�a⇤x [k]

e r =0
f o r j in r a n g e (n) :

i f j != k and j != l :
e r = e r +(y [j]�a⇤x [j]�b)⇤⇤2

e r r o r . e x t e n d ([e r])

This ends the loop. We then take the pair with the minimal cross validation error as
our final answer,

s e a r c h f o r b e s t p a i r w i t h s m a l l e s t c r o s s v a l i d a t i o n e r r o r

i = e r r o r . i n d e x (min (e r r o r))
k=c [i] [0]
l =c [i] [1]
#and use t h i s as answer

a =(y [l]�y [k]) / (x [l]�x [k])
b=y [k]�a⇤x [k]
y h a t =a⇤x+b
p l o t (x , yha t , ’ r��’)

| 15Classification with support vector machine using scikit-learn

2.3 Classification with support vector machine using
scikit-learn

We will now show an explicit example of classification using a support vector machine
from the scikit-learn collection of machine learning methods at http://scikit-learn.org/.
This library started as a Google Summer of Code project by David Cournapeau and
developed into an open source library. We will later have a look of what kind of
algorithms are implemented, but for now we are just using one of the methods for
classification called support vector machine. The SVM in scikit-learn is actually a
wrapper to the very popular SVMLIB implementation by Chih-Chung Chang and
Chih-Jen Lin. We will go through the code here with some explanations.

We begin as usual by importing libraries we need and to create the training set.

from p y l a b import ⇤
from s k l e a r n import svm

t r a i n i n g

n=100
x1= a r r a y ([r andn (n)+ 1 , r andn (n) + 1]) ; y1= z e r o s (n)
x2= a r r a y ([r andn (n)+ 3 , r andn (n) + 3]) ; y2= z e r o s (n)+1
x = h s t a c k ((x1 , x2)) . T
y = h s t a c k ((y1 , y2))

In real world application the data set is of course usually supplied by a third party often
through a data file. Here we simulate an example that consists of two 2-dimensional
Gaussian classes each with a unit covariance matrix and different means. The mean of
the first class is µ

1

= (1, 1) and the second class has µ
2

= (3, 3). The distributions of
these two classes are shown in Fig. 2.2.

Fig. 2.2 Two 2d-Gaussian curves with unit covariance and different means.

We now define a classifier model. We are using a Support Vector Classifier, as
specific support vector machine for classification, with two parameters that we will
discuss only later, namely we are using a linear kernel and regularization parameter
C = 1,

SVC = svm . SVC(k e r n e l = ’ l i n e a r ’ , C=1)

ML programming with Python16 |

SVC . f i t (x , y)

The second line implements the learning, that is it tales the examples in arrays x and
y and fit the model to it. At this point we have a trained model SVC that we can use to
predict data. We will test its performance with some new sample data,

t e s t i n g

x1= a r r a y ([r andn (n)+ 1 , r andn (n) + 1]) ; y1= z e r o s (n)
x2= a r r a y ([r andn (n)+ 3 , r andn (n) + 3]) ; y2= z e r o s (n)+1
x = h s t a c k ((x1 , x2)) . T
y = h s t a c k ((y1 , y2))

that we also plot with different symbols and color. We use the model for predicting the
labels for the class with the command

a=SVC . p r e d i c t (x)

and calculate the percentage of correct labels with

p r i n t (" P e r c e n t a g e C o r r e c t : " , (n�sum (abs (y�a))) / n)

Finally, we also like to plot the results

p l o t (x1 [0 , :] , x1 [1 , :] , ’ x r ’)
p l o t (x2 [0 , :] , x2 [1 , :] , ’ ob ’)
show ()

2.4 Other classification methods including MLP with
Tensorflow

The final example here is using two more classifiers in addition to the SVM on the
same two-Gaussian example, namely a random forrest (RF) classifier and a multilayer
perceptron MLP). The RF is also implemented in sklearn and is hence verst similar.
We are only changing the name of the model. For the MLP we use Googles Tensorflow
implementation which is also quite similar to the sklearn notation. The only difference
is that the model has of course different parameters and hyper-parameters.

from p y l a b import ⇤
from s k l e a r n import svm
from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r
import t e n s o r f l o w
from t e n s o r f l o w . c o n t r i b import sk f l ow

t r a i n i n g

n=100
x1= a r r a y ([r andn (n)+ 1 , r andn (n) + 1]) ; y1= z e r o s (n , i n t)
x2= a r r a y ([r andn (n)+ 3 , r andn (n) + 3]) ; y2= z e r o s (n , i n t)+1

x = h s t a c k ((x1 , x2)) . T
y = h s t a c k ((y1 , y2))

| 17Other classification methods including MLP with Tensorflow

SVC = svm . SVC(k e r n e l = ’ l i n e a r ’ , C=1)
SVC . f i t (x , y)

RF = R a n d o m F o r e s t C l a s s i f i e r (n e s t i m a t o r s =10)
RF . f i t (x , y)

MLP = s k f lo w . Tenso rF lowDNNClas s i f i e r (
h i d d e n u n i t s = [10 , 20 , 1 0] ,
n c l a s s e s =2 ,
b a t c h s i z e =128 ,
s t e p s =500 ,
l e a r n i n g r a t e = 0 . 0 5)

MLP. f i t (x , y)

t e s t i n g

x1= a r r a y ([r andn (n)+ 1 , r andn (n) + 1]) ; y1= z e r o s (n)
x2= a r r a y ([r andn (n)+ 3 , r andn (n) + 3]) ; y2= z e r o s (n)+1

p l o t (x1 [0 , :] , x1 [1 , :] , ’ x r ’)
p l o t (x2 [0 , :] , x2 [1 , :] , ’ ob ’)
show ()

x = h s t a c k ((x1 , x2)) . T
y = h s t a c k ((y1 , y2))

a=SVC . p r e d i c t (x)
p r i n t (" P e r c e n t a g e C o r r e c t SVM: " , (n�sum (abs (y�a))) / n)
b=RF . p r e d i c t (x)
p r i n t (" P e r c e n t a g e C o r r e c t RF : " , (n�sum (abs (y�b))) / n)
c=MLP. p r e d i c t (x)
p r i n t (" P e r c e n t a g e C o r r e c t MLP: " , (n�sum (abs (y�c))) / n)

The result of running the program is shown in Fig. 2.3. All three classifiers give
the same result in this run which is close to the optimal result in this example. When
running this program repeatedly there will be slight differences in the answers. We
will later discuss the stochastic nature of machine learning.

Exercise

1. What is the accuracy of the optimal solution of the two-Gaussian problem with
the parameters used in the above example? Calculate this bound analytically.

2. This exercise is a little project where you should apply a binary machine learning
classification to a problem of your choose. You might have an own data set

ML programming with Python18 |

Fig. 2.3 The plot shows the data points in the two-Gaussian example that consists of two Gaussian
classes with the same unit co-variance but different mean values. The problem is that these classes
overlap. Below the figure is the percentage correct of three machine learning classifiers, that of
a Support Vector Machine (SVM), a Random Forrest (RF) classifier), and a multilayer perceptron
(MLP).

or you could choose a data set from the UCI machine learning repository at
http://archive.ics.uci.edu/ml/. Note that many of the problems are not binary, but
you could can often change these data sets to a binary problem. For example, a
hight value could be changed into two classes of small and large.

