
18 Reinforcement Learning

In reinforcement learning, the learner is a decision-making agent

that takes actions in an environment and receives reward (or penalty)

for its actions in trying to solve a problem. After a set of trial-and-

error runs, it should learn the best policy, which is the sequence of

actions that maximize the total reward.

18.1 Introduction

Let us say we want to build a machine that learns to play chess. In
this case we cannot use a supervised learner for two reasons. First, it is
very costly to have a teacher that will take us through many games and
indicate us the best move for each position. Second, in many cases, there
is no such thing as the best move; the goodness of a move depends on the
moves that follow. A single move does not count; a sequence of moves is
good if after playing them we win the game. The only feedback is at the
end of the game when we win or lose the game.

Another example is a robot that is placed in a maze. The robot can
move in one of the four compass directions and should make a sequence
of movements to reach the exit. As long as the robot is in the maze, there
is no feedback and the robot tries many moves until it reaches the exit
and only then does it get a reward. In this case there is no opponent, but
we can have a preference for shorter trajectories, implying that in this
case we play against time.

These two applications have a number of points in common: there is
a decision maker, called the agent, that is placed in an environment (see
figure 18.1). In chess, the game-player is the decision maker and the en-
vironment is the board; in the second case, the maze is the environment
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Figure 18.1 The agent interacts with an environment. At any state of the envi-
ronment, the agent takes an action that changes the state and returns a reward.

of the robot. At any time, the environment is in a certain state that is
one of a set of possible states—for example, the state of the board, the
position of the robot in the maze. The decision maker has a set of actions

possible: legal movement of pieces on the chess board, movement of the
robot in possible directions without hitting the walls, and so forth. Once
an action is chosen and taken, the state changes. The solution to the task
requires a sequence of actions, and we get feedback, in the form of a re-

ward rarely, generally only when the complete sequence is carried out.
The reward defines the problem and is necessary if we want a learning

agent. The learning agent learns the best sequence of actions to solve a
problem where “best” is quantified as the sequence of actions that has
the maximum cumulative reward. Such is the setting of reinforcement

learning.
Reinforcement learning is different from the learning methods we dis-

cussed before in a number of respects. It is called “learning with a critic,”
as opposed to learning with a teacher which we have in supervised learn-
ing. A critic differs from a teacher in that it does not tell us what to docritic

but only how well we have been doing in the past; the critic never informs
in advance. The feedback from the critic is scarce and when it comes, it
comes late. This leads to the credit assignment problem. After takingcredit assignment

several actions and getting the reward, we would like to assess the indi-
vidual actions we did in the past and find the moves that led us to win the
reward so that we can record and recall them later on. As we see shortly,
what a reinforcement learning program does is that it learns to generate
an internal value for the intermediate states or actions in terms of how



18.2 Single State Case: K-Armed Bandit 449

good they are in leading us to the goal and getting us to the real reward.
Once such an internal reward mechanism is learned, the agent can just
take the local actions to maximize it.

The solution to the task requires a sequence of actions, and from this
perspective, we remember the Markov models we discussed in chapter 15.
Indeed, we use a Markov decision process to model the agent. The differ-
ence is that in the case of Markov models, there is an external process that
generates a sequence of signals, for example, speech, which we observe
and model. In the current case, however, it is the agent that generates
the sequence of actions. Previously, we also made a distinction between
observable and hidden Markov models where the states are observed or
hidden (and should be inferred) respectively. Similarly here, sometimes
we have a partially observable Markov decision process in cases where
the agent does not know its state exactly but should infer it with some
uncertainty through observations using sensors. For example, in the case
of a robot moving in a room, the robot may not know its exact position
in the room, nor the exact location of obstacles nor the goal, and should
make decisions through a limited image provided by a camera.

18.2 Single State Case: K-Armed Bandit

We start with a simple example. The K-armed bandit is a hypotheticalK-armed bandit

slot machine with K levers. The action is to choose and pull one of the
levers, and we win a certain amount of money that is the reward associ-
ated with the lever (action). The task is to decide which lever to pull to
maximize the reward. This is a classification problem where we choose
one of K. If this were supervised learning, then the teacher would tell us
the correct class, namely, the lever leading to maximum earning. In this
case of reinforcement learning, we can only try different levers and keep
track of the best. This is a simplified reinforcement learning problem
because there is only one state, or one slot machine, and we need only
decide on the action. Another reason why this is simplified is that we
immediately get a reward after a single action; the reward is not delayed,
so we immediately see the value of our action.

Let us say Q(a) is the value of action a. Initially, Q(a) = 0 for all a.
When we try action a, we get reward ra ≥ 0. If rewards are deterministic,
we always get the same ra for any pull of a and in such a case, we can
just set Q(a) = ra. If we want to exploit, once we find an action a such
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that Q(a) > 0, we can keep choosing it and get ra at each pull. However,
it is quite possible that there is another lever with a higher reward, so we
need to explore.

We can choose different actions and store Q(a) for all a. Whenever we
want to exploit, we can choose the action with the maximum value, that
is,

choose a∗ if Q(a∗) = max
a
Q(a)(18.1)

If rewards are not deterministic but stochastic, we get a different re-
ward each time we choose the same action. The amount of the reward is
defined by the probability distribution p(r|a). In such a case, we define
Qt(a) as the estimate of the value of action a at time t . It is an average of
all rewards received when action a was chosen before time t . An online
update can be defined as

Qt+1(a)← Qt(a)+ η[rt+1(a)−Qt(a)](18.2)

where rt+1(a) is the reward received after taking action a at time (t+1)st
time.

Note that equation 18.2 is the delta rule that we have used on many
occasions in the previous chapters: η is the learning factor (gradually
decreased in time for convergence), rt+1 is the desired output, and Qt(a)
is the current prediction. Qt+1(a) is the expected value of action a at time
t + 1 and converges to the mean of p(r|a) as t increases.

The full reinforcement learning problem generalizes this simple case in
a number of ways. First, we have several states. This corresponds to hav-
ing several slot machines with different reward probabilities, p(r|si, aj),
and we need to learnQ(si, aj), which is the value of taking action aj when
in state si . Second, the actions affect not only the reward but also the next
state, and we move from one state to another. Third, the rewards are de-
layed and we need to be able to estimate immediate values from delayed
rewards.

18.3 Elements of Reinforcement Learning

The learning decision maker is called the agent. The agent interacts with
the environment that includes everything outside the agent. The agent
has sensors to decide on its state in the environment and takes an action

that modifies its state. When the agent takes an action, the environment
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provides a reward. Time is discrete as t = 0,1,2, . . ., and st ∈ S denotes
the state of the agent at time t where S is the set of all possible states.
at ∈A(st) denotes the action that the agent takes at time t where A(st)
is the set of possible actions in state st . When the agent in state st takes
the action at , the clock ticks, reward rt+1 ∈ ℜ is received, and the agent
moves to the next state, st+1. The problem is modeled using a MarkovMarkov decision

process decision process (MDP). The reward and next state are sampled from their
respective probability distributions, p(rt+1|st , at ) and P(st+1|st , at). Note
that what we have is a Markov system where the state and reward in
the next time step depend only on the current state and action. In some
applications, reward and next state are deterministic, and for a certain
state and action taken, there is one possible reward value and next state.

Depending on the application, a certain state may be designated as the
initial state and in some applications, there is also an absorbing terminal
(goal) state where the search ends; all actions in this terminal state tran-
sition to itself with probability 1 and without any reward. The sequence
of actions from the start to the terminal state is an episode, or a trial.episode

The policy, π , defines the agent’s behavior and is a mapping from thepolicy

states of the environment to actions: π : S → A. The policy defines the
action to be taken in any state st : at = π(st). The value of a policy π ,
Vπ(st), is the expected cumulative reward that will be received while the
agent follows the policy, starting from state st .

In the finite-horizon or episodic model, the agent tries to maximize thefinite-horizon

expected reward for the next T steps:

Vπ(st) = E[rt+1 + rt+2 + · · · + rt+T ] = E

⎡

⎣

T
∑

i=1

rt+i

⎤

⎦(18.3)

Certain tasks are continuing, and there is no prior fixed limit to the
episode. In the infinite-horizon model, there is no sequence limit, butinfinite-horizon

future rewards are discounted:

Vπ(st) = E[rt+1 + γrt+2 + γ2rt+3 + · · ·] = E

⎡

⎣

∞
∑

i=1

γi−1rt+i

⎤

⎦(18.4)

where 0 ≤ γ < 1 is the discount rate to keep the return finite. If γ = 0,discount rate

then only the immediate reward counts. As γ approaches 1, rewards
further in the future count more, and we say that the agent becomes
more farsighted. γ is less than 1 because there generally is a time limit
to the sequence of actions needed to solve the task. The agent may be a
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robot that runs on a battery. We prefer rewards sooner rather than later
because we are not certain how long we will survive.

For each policy π , there is a Vπ (st), and we want to find the optimaloptimal policy

policy π∗ such that

V∗(st) =max
π
Vπ(st),∀st(18.5)

In some applications, for example, in control, instead of working with
the values of states, V(st ), we prefer to work with the values of state-
action pairs, Q(st, at). V(st ) denotes how good it is for the agent to be
in state st , whereas Q(st, at) denotes how good it is to perform action at
when in state st . We define Q∗(st , at) as the value, that is, the expected
cumulative reward, of action at taken in state st and then obeying the
optimal policy afterward. The value of a state is equal to the value of the
best possible action:

V∗(st) = max
at
Q∗(st , at)

= max
at
E

⎡

⎣

∞
∑

i=1

γi−1rt+i

⎤

⎦

= max
at
E

⎡

⎣rt+1 + γ
∞
∑

i=1

γi−1rt+i+1

⎤

⎦

= max
at
E
[

rt+1 + γV∗(st+1)
]

V∗(st) = max
at

⎛

⎝E[rt+1]+ γ
∑

st+1

P(st+1|st , at)V∗(st+1)

⎞

⎠(18.6)

To each possible next state st+1, we move with probability P(st+1|st , at),
and continuing from there using the optimal policy, the expected cumu-
lative reward is V∗(st+1). We sum over all such possible next states, and
we discount it because it is one time step later. Adding our immediate
expected reward, we get the total expected cumulative reward for action
at . We then choose the best of possible actions. Equation 18.6 is known
as Bellman’s equation (Bellman 1957). Similarly, we can also writeBellman’s equation

Q∗(st , at) = E[rt+1]+ γ
∑

st+1

P(st+1|st , at)max
at+1

Q∗(st+1, at+1)(18.7)

Once we have Q∗(st , at) values, we can then define our policy π as
taking the action a∗t , which has the highest value among all Q∗(st , at):

π∗(st) : Choose a∗t where Q∗(st , a
∗
t ) = max

at
Q∗(st , at)(18.8)
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Initialize V(s) to arbitrary values

Repeat

For all s ∈ S
For all a ∈A
Q(s, a)← E[r|s, a] + γ

∑

s′∈S P(s
′|s, a)V(s′)

V(s) ← maxa Q(s, a)
Until V(s) converge

Figure 18.2 Value iteration algorithm for model-based learning.

This means that if we have theQ∗(st , at) values, then by using a greedy
search at each local step we get the optimal sequence of steps that maxi-
mizes the cumulative reward.

18.4 Model-Based Learning

We start with model-based learning where we completely know the en-
vironment model parameters, p(rt+1|st , at) and P(st+1|st , at). In such a
case, we do not need any exploration and can directly solve for the opti-
mal value function and policy using dynamic programming. The optimal
value function is unique and is the solution to the simultaneous equa-
tions given in equation 18.6. Once we have the optimal value function,
the optimal policy is to choose the action that maximizes the value in the
next state:

π∗(st) = arg max
at

⎛

⎝E[rt+1|st , at]+ γ
∑

st+1∈S
P(st+1|st , at)V∗(st + 1)

⎞

⎠(18.9)

18.4.1 Value Iteration

To find the optimal policy, we can use the optimal value function, and
there is an iterative algorithm called value iteration that has been shownvalue iteration

to converge to the correct V∗ values. Its pseudocode is given in fig-
ure 18.2.

We say that the values converged if the maximum value difference be-
tween two iterations is less than a certain threshold δ:

max
s∈S

|V(l+1)(s)− V(l)(s)| < δ
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Initialize a policy π ′ arbitrarily

Repeat

π ← π ′

Compute the values using π by

solving the linear equations

Vπ (s) = E[r|s,π(s)]+ γ
∑

s′∈S P(s
′|s,π(s))Vπ (s′)

Improve the policy at each state

π ′(s)← arg maxa(E[r|s, a] + γ
∑

s′∈S P(s
′|s, a)Vπ (s′))

Until π = π ′

Figure 18.3 Policy iteration algorithm for model-based learning.

where l is the iteration counter. Because we care only about the actions
with the maximum value, it is possible that the policy converges to the
optimal one even before the values converge to their optimal values. Each
iteration is O(|S|2|A|), but frequently there is only a small number k <
|S| of next possible states, so complexity decreases to O(k|S||A|).

18.4.2 Policy Iteration

In policy iteration, we store and update the policy rather than doing this
indirectly over the values. The pseudocode is given in figure 18.3. The
idea is to start with a policy and improve it repeatedly until there is no
change. The value function can be calculated by solving for the linear
equations. We then check whether we can improve the policy by taking
these into account. This step is guaranteed to improve the policy, and
when no improvement is possible, the policy is guaranteed to be optimal.
Each iteration of this algorithm takes O(|A||S|2 + |S|3) time that is more
than that of value iteration, but policy iteration needs fewer iterations
than value iteration.

18.5 Temporal Difference Learning

Model is defined by the reward and next state probability distributions,
and as we saw in section 18.4, when we know these, we can solve for the
optimal policy using dynamic programming. However, these methods are
costly, and we seldom have such perfect knowledge of the environment.
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The more interesting and realistic application of reinforcement learning
is when we do not have the model. This requires exploration of the en-
vironment to query the model. We first discuss how this exploration
is done and later see model-free learning algorithms for deterministic
and nondeterministic cases. Though we are not going to assume a full
knowledge of the environment model, we will however require that it be
stationary.

As we will see shortly, when we explore and get to see the value of the
next state and reward, we use this information to update the value of the
current state. These algorithms are called temporal difference algorithmstemporal

difference because what we do is look at the difference between our current estimate
of the value of a state (or a state-action pair) and the discounted value of
the next state and the reward received.

18.5.1 Exploration Strategies

To explore, one possibility is to use ϵ-greedy search where with prob-
ability ϵ, we choose one action uniformly randomly among all possible
actions, namely, explore, and with probability 1 − ϵ, we choose the best
action, namely, exploit. We do not want to continue exploring indefinitely
but start exploiting once we do enough exploration; for this, we start with
a high ϵ value and gradually decrease it. We need to make sure that our
policy is soft, that is, the probability of choosing any action a ∈ A in
state s ∈ S is greater than 0.

We can choose probabilistically, using the softmax function to convert
values to probabilities

P(a|s) = expQ(s, a)
∑

b∈A expQ(s, b)
(18.10)

and then sample according to these probabilities. To gradually move
from exploration to exploitation, we can use a “temperature” variable T
and define the probability of choosing action a as

P(a|s) = exp[Q(s, a)/T]
∑

b∈A exp[Q(s, b)/T]
(18.11)

When T is large, all probabilities are equal and we have exploration.
When T is small, better actions are favored. So the strategy is to start
with a large T and decrease it gradually, a procedure named annealing,
which in this case moves from exploration to exploitation smoothly in
time.
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18.5.2 Deterministic Rewards and Actions

In model-free learning, we first discuss the simpler deterministic case,
where at any state-action pair, there is a single reward and next state
possible. In this case, equation 18.7 reduces to

Q(st, at) = rt+1 + γmax
at+1

Q(st+1, at+1)(18.12)

and we simply use this as an assignment to update Q(st, at). When in
state st , we choose action at by one of the stochastic strategies we saw
earlier, which returns a reward rt+1 and takes us to state st+1. We then
update the value of previous action as

Q̂(st , at)← rt+1 + γmax
at+1

Q̂(st+1, at+1)(18.13)

where the hat denotes that the value is an estimate. Q̂(st+1, at+1) is a later
value and has a higher chance of being correct. We discount this by γ and
add the immediate reward (if any) and take this as the new estimate for
the previous Q̂(st , at). This is called a backup because it can be viewed asbackup

taking the estimated value of an action in the next time step and “backing
it up” to revise the estimate for the value of a current action.

For now we assume that all Q̂(s, a) values are stored in a table; we will
see later on how we can store this information more succinctly when |S|
and |A| are large.

Initially all Q̂(st , at ) are 0, and they are updated in time as a result
of trial episodes. Let us say we have a sequence of moves and at each
move, we use equation 18.13 to update the estimate of theQ value of the
previous state-action pair using the Q value of the current state-action
pair. In the intermediate states, all rewards and therefore values are 0,
so no update is done. When we get to the goal state, we get the reward
r and then we can update the Q value of the previous state-action pair
as γr . As for the preceding state-action pair, its immediate reward is 0
and the contribution from the next state-action pair is discounted by γ
because it is one step later. Then in another episode, if we reach this
state, we can update the one preceding that as γ2r , and so on. This way,
after many episodes, this information is backed up to earlier state-action
pairs. Q values increase until they reach their optimal values as we find
paths with higher cumulative reward, for example, shorter paths, but they
never decrease (see figure 18.4).

Note that we do not know the reward or next state functions here.
They are part of the environment, and it is as if we query them when
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Figure 18.4 Example to show that Q values increase but never decrease. This
is a deterministic grid-world where G is the goal state with reward 100, all other
immediate rewards are 0, and γ = 0.9. Let us consider the Q value of the transi-
tion marked by asterisk, and let us just consider only the two paths A and B. Let
us say that path A is seen before path B, then we have γmax(0,81) = 72.9;
if afterward B is seen, a shorter path is found and the Q value becomes
γmax(100,81) = 90. If B is seen before A, the Q value is γmax(100,0) = 90;
then when A is seen, it does not change because γmax(100,81) = 90.

we explore. We are not modeling them either, though that is another
possibility. We just accept them as given and learn directly the optimal
policy through the estimated value function.

18.5.3 Nondeterministic Rewards and Actions

If the rewards and the result of actions are not deterministic, then we
have a probability distribution for the reward p(rt+1|st , at) from which
rewards are sampled, and there is a probability distribution for the next
state P(st+1|st , at). These help us model the uncertainty in the system
that may be due to forces we cannot control in the environment: for
instance, our opponent in chess, the dice in backgammon, or our lack of
knowledge of the system. For example, we may have an imperfect robot
which sometimes fails to go in the intended direction and deviates, or
advances shorter or longer than expected.

In such a case, we have

Q(st, at) = E[rt+1]+ γ
∑

st+1

P(st+1|st , at )max
at+1

Q(st+1, at+1)(18.14)

We cannot do a direct assignment in this case because for the same
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Initialize all Q(s, a) arbitrarily

For all episodes

Initalize s

Repeat

Choose a using policy derived from Q, e.g., ϵ-greedy

Take action a, observe r and s′

Update Q(s, a):

Q(s, a)← Q(s, a)+ η(r + γmaxa′Q(s′, a′)−Q(s, a))
s ← s′

Until s is terminal state

Figure 18.5 Q learning, which is an off-policy temporal difference algorithm.

state and action, we may receive different rewards or move to different
next states. What we do is keep a running average. This is known as the
Q learning algorithm:Q learning

Q̂(st , at)← Q̂(st , at)+ η(rt+1 + γmax
at+1

Q̂(st+1, at+1)−Q(st, at))(18.15)

We think of rt+1+γmaxat+1 Q̂(st+1, at+1) values as a sample of instances
for each (st , at ) pair and we would like Q̂(st , at) to converge to its mean.
As usual η is gradually decreased in time for convergence, and it has been
shown that this algorithm converges to the optimal Q∗ values (Watkins
and Dayan 1992). The pseudocode of the Q learning algorithm is given
in figure 18.5.

We can also think of equation 18.15 as reducing the difference between
the currentQ value and the backed-up estimate, from one time step later.
Such algorithms are called temporal difference (TD) algorithms (Suttontemporal

difference 1988).
This is an off-policy method as the value of the best next action is usedoff-policy

without using the policy. In an on-policy method, the policy is used toon-policy

determine also the next action. The on-policy version of Q learning is the
Sarsa algorithm whose pseudocode is given in figure 18.6. We see thatSarsa

instead of looking for all possible next actions a′ and choosing the best,
the on-policy Sarsa uses the policy derived from Q values to choose one
next action a′ and uses its Q value to calculate the temporal difference.
On-policy methods estimate the value of a policy while using it to take
actions. In off-policy methods, these are separated, and the policy used
to generate behavior, called the behavior policy, may in fact be differ-
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Initialize all Q(s, a) arbitrarily

For all episodes

Initalize s

Choose a using policy derived from Q, e.g., ϵ-greedy

Repeat

Take action a, observe r and s′

Choose a′ using policy derived from Q, e.g., ϵ-greedy

Update Q(s, a):

Q(s, a)← Q(s, a)+ η(r + γQ(s′, a′)−Q(s, a))
s ← s′, a ← a′

Until s is terminal state

Figure 18.6 Sarsa algorithm, which is an on-policy version of Q learning.

ent from the policy that is evaluated and improved, called the estimation

policy.
Sarsa converges with probability 1 to the optimal policy and state-

action values if a GLIE policy is employed to choose actions. A GLIE
(greedy in the limit with infinite exploration) policy is where (1) all state-
action pairs are visited an infinite number of times, and (2) the policy
converges in the limit to the greedy policy (which can be arranged, e.g.,
with ϵ-greedy policies by setting ϵ = 1/t).

The same idea of temporal difference can also be used to learn V(s)
values, instead of Q(s, a). TD learning (Sutton 1988) uses the followingTD learning

update rule to update a state value:

V(st)← V(st)+ η[rt+1 + γV(st+1)− V(st)](18.16)

This again is the delta rule where rt+1 + γV(st+1) is the better, later
prediction and V(st) is the current estimate. Their difference is the tem-
poral difference, and the update is done to decrease this difference. The
update factor η is gradually decreased, and TD is guaranteed to converge
to the optimal value function V∗(s).

18.5.4 Eligibility Traces

The previous algorithms are one-step—that is, the temporal difference is
used to update only the previous value (of the state or state-action pair).
An eligibility trace is a record of the occurrence of past visits that en-eligibility trace
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Figure 18.7 Example of an eligibility trace for a value. Visits are marked by an
asterisk.

ables us to implement temporal credit assignment, allowing us to update
the values of previously occurring visits as well. We discuss how this
is done with Sarsa to learn Q values; adapting this to learn V values is
straightforward.

To store the eligibility trace, we require an additional memory variable
associated with each state-action pair, e(s, a), initialized to 0. When the
state-action pair (s, a) is visited, namely, when we take action a in state
s, its eligibility is set to 1; the eligibilities of all other state-action pairs
are multiplied by γλ. 0 ≤ λ ≤ 1 is the trace decay parameter.

et(s, a) =
{

1 if s = st and a = at ,
γλet−1(s, a) otherwise

(18.17)

If a state-action pair has never been visited, its eligibility remains 0; if it
has been, as time passes and other state-actions are visited, its eligibility
decays depending on the value of γ and λ (see figure 18.7).

We remember that in Sarsa, the temporal error at time t is

δt = rt+1 + γQ(st+1, at+1)−Q(st, at)(18.18)

In Sarsa with an eligibility trace, named Sarsa(λ), all state-action pairs
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Initialize all Q(s, a) arbitrarily, e(s, a) ← 0,∀s, a
For all episodes

Initalize s

Choose a using policy derived from Q, e.g., ϵ-greedy

Repeat

Take action a, observe r and s′

Choose a′ using policy derived from Q, e.g., ϵ-greedy

δ← r + γQ(s′, a′)−Q(s, a)
e(s, a) ← 1
For all s, a:

Q(s, a)← Q(s, a)+ ηδe(s, a)
e(s, a) ← γλe(s, a)

s ← s′, a ← a′

Until s is terminal state

Figure 18.8 Sarsa(λ) algorithm.

are updated as

Q(s, a)← Q(s, a)+ ηδtet(s, a), ∀s, a(18.19)

This updates all eligible state-action pairs, where the update depends
on how far they have occurred in the past. The value of λ defines the
temporal credit: if λ = 0, only a one-step update is done. The algo-
rithms we discussed in section 18.5.3 are such, and for this reason they
are namedQ(0), Sarsa(0), or TD(0). As λ gets closer to 1, more of the pre-
vious steps are considered. When λ = 1, all previous steps are updated
and the credit given to them falls only by γ per step. In online updat-
ing, all eligible values are updated immediately after each step; in offline
updating, the updates are accumulated and a single update is done at
the end of the episode. Online updating takes more time but converges
faster. The pseudocode for Sarsa(λ) is given in figure 18.8. Q(λ) andSarsa(λ)

TD(λ) algorithms can similarly be derived (Sutton and Barto 1998).

18.6 Generalization

Until now, we assumed that the Q(s, a) values (or V(s), if we are esti-
mating values of states) are stored in a lookup table, and the algorithms
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we considered earlier are called tabular algorithms. There are a num-
ber of problems with this approach: (1) when the number of states and
the number of actions is large, the size of the table may become quite
large; (2) states and actions may be continuous, for example, turning the
steering wheel by a certain angle, and to use a table, they should be dis-
cretized which may cause error; and (3) when the search space is large,
too many episodes may be needed to fill in all the entries of the table
with acceptable accuracy.

Instead of storing the Q values as they are, we can consider this a re-
gression problem. This is a supervised learning problem where we define
a regressor Q(s, a|θ), taking s and a as inputs and parameterized by a
vector of parameters, θ, to learn Q values. For example, this can be an
artificial neural network with s and a as its inputs, one output, and θ its
connection weights.

A good function approximator has the usual advantages and solves the
problems discussed previously. A good approximation may be achieved
with a simple model without explicitly storing the training instances; it
can use continuous inputs; and it allows generalization. If we know that
similar (s, a) pairs have similar Q values, we can generalize from past
cases and come up with good Q(s, a) values even if that state-action pair
has never been encountered before.

To be able to train the regressor, we need a training set. In the case
of Sarsa(0), we saw before that we would like Q(st, at) to get close to
rt+1 + γQ(st+1, at+1). So, we can form a set of training samples where
the input is the state-action pair (st , at) and the required output is rt+1 +
γQ(st+1, at+1). We can write the squared error as

Et(θ) = [rt+1 + γQ(st+1, at+1)−Q(st, at)]2(18.20)

Training sets can similarly be defined for Q(0) and TD(0), where in
the latter case we learn V(s), and the required output is rt+1 − γV(st+1).
Once such a set is ready, we can use any supervised learning algorithm
for learning the training set.

If we are using a gradient-descent method, as in training neural net-
works, the parameter vector is updated as

∆θ = η[rt+1 + γQ(st+1, at+1)−Q(st, at)]∇θt
Q(st , at)(18.21)

This is a one-step update. In the case of Sarsa(λ), the eligibility trace is
also taken into account:

∆θ = ηδtet(18.22)



18.6 Generalization 463

where the temporal difference error is

δt = rt+1 + γQ(st+1, at+1)−Q(st, at)

and the vector of eligibilities of parameters are updated as

et = γλet−1 +∇θt
Q(st , at)(18.23)

with e0 all zeros. In the case of a tabular algorithm, the eligibilities are
stored for the state-action pairs because they are the parameters (stored
as a table). In the case of an estimator, eligibility is associated with the
parameters of the estimator. We also note that this is very similar to the
momentum method for stabilizing backpropagation (section 11.8.1). The
difference is that in the case of momentum previous weight changes are
remembered, whereas here previous gradient vectors are remembered.
Depending on the model used for Q(st, at), for example, a neural net-
work, we plug its gradient vector in equation 18.23.

In theory, any regression method can be used to train the Q function,
but the particular task has a number of requirements. First, it should al-
low generalization; that is, we really need to guarantee that similar states
and actions have similar Q values. This also requires a good coding of s
and a, as in any application, to make the similarities apparent. Second,
reinforcement learning updates provide instances one by one and not as
a whole training set, and the learning algorithm should be able to do in-
dividual updates to learn the new instance without forgetting what has
been learned before. For example, a multilayer perceptron using back-
propagation can be trained with a single instance only if a small learning
rate is used. Or, such instances may be collected to form a training set
and learned altogether but this slows down learning as no learning hap-
pens while a sufficiently large sample is being collected.

Because of these reasons, it seems a good idea to use local learners to
learn the Q values. In such methods, for example, radial basis functions,
information is localized and when a new instance is learned, only a local
part of the learner is updated without possibly corrupting the informa-
tion in another part. The same requirements apply if we are estimating
the state values as V(st |θ).
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18.7 Partially Observable States

18.7.1 The Setting

In certain applications, the agent does not know the state exactly. It is
equipped with sensors that return an observation, which the agent then
uses to estimate the state. Let us say we have a robot that navigates
in a room. The robot may not know its exact location in the room, or
what else is there in the room. The robot may have a camera with which
sensory observations are recorded. This does not tell the robot its state
exactly but gives some indication as to its likely state. For example, the
robot may only know that there is an obstacle to its right.

The setting is like a Markov decision process, except that after taking an
action at , the new state st+1 is not known, but we have an observation ot+1

that is a stochastic function of st and at : p(ot+1|st , at). This is called a
partially observable MDP (POMDP). If ot+1 = st+1, then POMDP reduces topartially

observable MDP the MDP. This is just like the distinction between observable and hidden
Markov models and the solution is similar; that is, from the observation,
we need to infer the state (or rather a probability distribution for the
states) and then act based on this. If the agent believes that it is in state
s1 with probability 0.4 and in state s2 with probability 0.6, then the value
of any action is 0.4 times the value of the action in s1 plus 0.6 times the
value of the action in s2.

The Markov property does not hold for observations. The next state
observation does not only depend on the current action and observation.
When there is limited observation, two states may appear the same but
are different and if these two states require different actions, this can
lead to a loss of performance, as measured by the cumulative reward.
The agent should somehow compress the past trajectory into a current
unique state estimate. These past observations can also be taken into
account by taking a past window of observations as input to the policy,
or one can use a recurrent neural network (section 11.12.2) to maintain
the state without forgetting past observations.

At any time, the agent may calculate the most likely state and take an
action accordingly. Or it may take an action to gather information and
reduce uncertainty, for example, search for a landmark, or stop to ask
for direction. This implies the importance of the value of information,value of

information and indeed POMDPs can be modeled as dynamic influence diagrams (sec-
tion 16.8). The agent chooses between actions based on the amount of
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Figure 18.9 In the case of a partially observable environment, the agent has a
state estimator (SE) that keeps an internal belief state b and the policy π gener-
ates actions based on the belief states.

information they provide, the amount of reward they produce, and how
they change the state of the environment.

To keep the process Markov, the agent keeps an internal belief state btbelief state

that summarizes its experience (see figure 18.9). The agent has a state

estimator that updates the belief state bt+1 based on the last action at ,
current observation ot+1, and its previous belief state bt . There is a pol-
icy π that generates the next action at+1 based on this belief state, as
opposed to the actual state that we had in a completely observable envi-
ronment. The belief state is a probability distribution over states of the
environment given the initial belief state (before we did any actions) and
the past observation-action history of the agent (without leaving out any
information that could improve agent’s performance). Q learning in such
a case involves the belief state-action pair values, instead of the actual
state-action pairs:

Q(bt, at) = E[rt+1]+ γ
∑

bt+1

P(bt+1|bt , at )V(bt+1)(18.24)

18.7.2 Example: The Tiger Problem

We now discuss an example that is a slightly different version of the Tiger

problem discussed in Kaelbling, Littman, and Cassandra 1998, modified
as in the example in Thrun, Burgard, and Fox 2005. Let us say we are
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standing in front of two doors, one to our left and the other to other
right, leading to two rooms. Behind one of the two doors, we do not
know which, there is a crouching tiger, and behind the other, there is
a treasure. If we open the door of the room where the tiger is, we get
a large negative reward, and if we open the door of the treasure room,
we get some positive reward. The hidden state, zL, is the location of the
tiger. Let us say p denotes the probability that tiger is in the room to the
left and therefore, the tiger is in the room to the right with probability
1− p:

p ≡ P(zL = 1)

The two actions are aL and aR , which respectively correspond to open-
ing the left or the right door. The rewards are

r(A,Z) Tiger left Tiger right
Open left −100 +80
Open right +90 −100

We can calculate the expected reward for the two actions. There are no
future rewards because the episode ends once we open one of the doors.

R(aL) = r(aL, zL)P(zL)+ r(aL, zR)P(zR) = −100p+ 80(1− p)
R(aR) = r(aR, zL)P(zL)+ r(aR, zR)P(zR) = 90p − 100(1− p)

Given these rewards, if p is close to 1, if we believe that there is a high
chance that the tiger is on the left, the right action will be to choose the
right door, and, similarly, for p close to 0, it is better to choose the left
door.

The two intersect for p around 0.5, and there the expected reward is
approximately −10. The fact that the expected reward is negative when
p is around 0.5 (when we have uncertainty) indicates the importance of
collecting information. If we can add sensors to to decrease uncertainty—
that is, move p away from 0.5 to either close to 0 or close to 1—we can
take actions with high positive rewards. That sensing action, aS , may
have a small negative reward: R(aS) = −1; this may be considered as
the cost of sensing or equivalent to discounting future reward by γ < 1
because we are postponing taking the real action (of opening one of the
doors).
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In such a case, the expected rewards and value of the best action are
shown in figure 18.10a:

V = max(aL, aR, aS)

Let us say as sensory input, we use microphones to check whether the
tiger is behind the left or the right door. But we have unreliable sensors
(so that we still stay in the realm of partial observability). Let us say we
can only detect tiger’s presence with 0.7 probability:

P(oL|zL) = 0.7 P(oL|zR) = 0.3

P(oR|zL) = 0.3 P(oR|zR) = 0.7

If we sense oL, our belief in the tiger’s position changes:

p′ = P(zL|oL) =
P(oL|zL)P(zL)

p(oL)
= 0.7p

0.7p + 0.3(1− p)
The effect of this is shown in figure 18.10b where we plot R(aL|oL).

Sensing oL turns opening the right door into a better action for a wider
range. The better sensors we have (if the probability of correct sens-
ing moves from 0.7 closer to 1), the larger this range gets (exercise 9).
Similarly, as we see in figure 18.10c, if we sense oR, this increases the
chances of opening the left door. Note that sensing also decreases the
range where there is a need to sense (once more).

The expected rewards for the actions in this case are

R(aL|oL) = r(aL, zL)P(zL|oL)+ r(aL, zR)P(zR|oL)
= −100p′ + 80(1− p′)

= −100 · 0.7 · p
p(oL)

+ 80 · 0.3 · (1− p)
p(oL)

R(aR|oL) = r(aR, zL)P(zL|oL)+ r(aR, zR)P(zR|oL)
= 90p′ − 100(1− p′)

= 90 · 0.7 · p
p(oL)

− 100 · 0.3 · (1− p)
p(oL)

R(aS|oL) = −1

The best action is this case is the maximum of these three. Similarly, if
we sense oR , the expected rewards become

R(aL|oR) = r(aL, zL)P(zL|oR)+ r(aL, zR)P(zR|oR)

= −100 · 0.3 · p
p(oR)

+ 80 · 0.7 · (1− p)
p(oR)
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Figure 18.10 Expected rewards and the effect of sensing in the Tiger problem.

R(aR|oR) = r(aR, zL)P(zL|oR)+ r(aR, zR)P(zR|oR)

= 90 · 0.3 · p
p(oR)

− 100 · 0.7 · (1− p)
p(oR)

R(aS|oR) = −1

To calculate the expected reward, we need to take average over both
sensor readings weighted by their probabilities:

V ′ =
∑

j

[

max
i
R(ai|oj)

]

P(Oj)

= max(R(aL|oL), R(aR|oL), R(aS|oL))P(oL)+
max(R(aL|oR),R(aR|oR),R(aS|oR))P(oR)

= max(−70p+ 24(1− p),63p− 30(1− p),−0.7p− 0.3(1− p))+
max(−30p+ 56(1− p),27p− 70(1− p),−0.3p− 0.7(1− p))
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= max

⎛

⎜
⎜
⎜
⎝

−100p +80(1− p)
−43p −46(1− p)

33p +26(1− p)
90p −100(1− p)

⎞

⎟
⎟
⎟
⎠

(18.25)

Note that when we multiply by P(oL), it cancels out and we get func-
tions linear in p. These five lines and the piecewise function that corre-
sponds to their maximum are shown in figure 18.10d. Note that the line,
−40p − 5(1− p), as well as the ones involving aS , are beneath others for
all values of p and can safely be pruned. The fact that figure 18.10d is
better than figure 18.10a indicates the value of information.value of

information What we calculate here is the value of the best action had we chosen aS .
For example, the first line corresponds to choosing aL after aS . So to find
the best decision with an episode of length two, we need to back this up
by subtracting −1, which is the reward of aS , and get the expected reward
for the action of sense. Equivalently, we can consider this as waiting that
has an immediate reward of 0 but discounts the future reward by some
γ < 1. We also have the two usual actions of aL and aR and we choose the
best of three; the two immediate actions and the one discounted future
action.

Let us now make the problem more interesting, as in the example of
Thrun, Burgard, and Fox 2005. Let us assume that there is a door between
the two rooms and without us seeing, the tiger can move from one room
to the other. Let us say that this is a restless tiger and it stays in the same
room with probability 0.2 and moves to the other room with probability
0.8. This means that p should also be updated as

p′ = 0.2p + 0.8(1− p)

and this updated p should be used in equation 18.25 while choosing the
best action after having chosen aS :

V ′ =max

⎛

⎜
⎝

−100p′ +80(1− p′)
33p′ +26(1− p′)
90p′ −100(1− p′)

⎞

⎟
⎠

Figure 18.11b corresponds to figure 18.10d with the updated p′. Now,
when planning for episodes of length two, we have the two immediate
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Figure 18.11 Expected rewards change (a) if the hidden state can change, and
(b) when we consider episodes of length two.

actions of aL and aR , or we wait and sense when p changes and then we
take the action and get its discounted reward (figure 18.11b):

V2 =max

⎛

⎜
⎝

−100p +80(1− p)
90p −100(1− p)

maxV ′ − 1

⎞

⎟
⎠

We see that figure 18.11b is better than figure 18.10a; when wrong
actions may lead to large penalty, it is better to defer judgment, look for
extra information, and plan ahead. We can consider longer episodes by
continuing the iterative updating of p and discounting by subtracting 1
and including the two immediate actions to calculate Vt , t > 2.

The algorithm we have just discussed where the value is represented by
piecewise linear functions works only when the number of states, actions,
observations, and the episode length are all finite. Even in applications
where any of these is not small, or when any is continuous-valued, the
complexity becomes high and we need to resort to approximate algo-
rithms having reasonable complexity. Reviews of such algorithms are
given in Hauskrecht 2000 and Thrun, Burgard, and Fox 2005.

18.8 Notes

More information on reinforcement learning can be found in the textbook
by Sutton and Barto (1998) that discusses all the aspects, learning algo-
rithms, and several applications. A comprehensive tutorial is Kaelbling,



18.8 Notes 471

Littman, and Moore 1996. Recent work on reinforcement learning applied
to robotics with some impressive applications is given in Thrun, Burgard,
and Fox 2005.

Dynamic programming methods are discussed in Bertsekas 1987 and
in Bertsekas and Tsitsiklis 1996, and TD(λ) andQ-learning can be seen as
stochastic approximations to dynamic programming (Jaakkola, Jordan,
and Singh 1994). Reinforcement learning has two advantages over classi-
cal dynamic programming: first, as they learn, they can focus on the parts
of the space that are important and ignore the rest; and second, they can
employ function approximation methods to represent knowledge that al-
lows them to generalize and learn faster.

A related field is that of learning automata (Narendra and Thathacharlearning automata

1974), which are finite state machines that learn by trial and error for
solving problems like the K-armed bandit. The setting we have here is
also the topic of optimal control where there is a controller (agent) taking
actions in a plant (environment) that minimize cost (maximize reward).

The earliest use of temporal difference method was in Samuel’s check-
ers program written in 1959 (Sutton and Barto 1998). For every two suc-
cessive positions in a game, the two board states are evaluated by the
board evaluation function that then causes an update to decrease the dif-
ference. There has been much work on games because games are both
easily defined and challenging. A game like chess can easily be simulated:
the allowed moves are formal, and the goal is well defined. Despite the
simplicity of defining the game, expert play is quite difficult.

One of the most impressive application of reinforcement learning is
the TD-Gammon program that learns to play backgammon by playingTD-Gammon

against itself (Tesauro 1995). This program is superior to the previous
neurogammon program also developed by Tesauro, which was trained
in a supervised manner based on plays by experts. Backgammon is a
complex task with approximately 1020 states, and there is randomness
due to the roll of dice. Using the TD(λ) algorithm, the program achieves
master level play after playing 1,500,000 games against a copy of itself.

Another interesting application is in job shop scheduling, or finding
a schedule of tasks satisfying temporal and resource constraints (Zhang
and Dietterich 1996). Some tasks have to be finished before others can be
started, and two tasks requiring the same resource cannot be done simul-
taneously. Zhang and Dietterich used reinforcement learning to quickly
find schedules that satisfy the constraints and are short. Each state is one
schedule, actions are schedule modifications, and the program finds not
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G

S

Figure 18.12 The grid world. The agent can move in the four compass direc-
tions starting from S. The goal state is G.

only one good schedule but a schedule for a class of related scheduling
problems.

Recently hierarchical methods have also been proposed where the prob-
lem is decomposed into a set of subproblems. This has the advantage
that policies learned for the subproblems can be shared for multiple
problems, which accelerates learning a new problem (Dietterich 2000).
Each subproblem is simpler and learning them separately is faster. The
disadvantage is that when they are combined, the policy may be subopti-
mal.

Though reinforcement learning algorithms are slower than supervised
learning algorithms, it is clear that they have a wider variety of applica-
tion and have the potential to construct better learning machines (Ballard
1997). They do not need any supervision, and this may actually be better
since then they are not biased by the teacher. For example, Tesauro’s
TD-Gammon program in certain circumstances came up with moves that
turned out to be superior to those made by the best players. The field of
reinforcement learning is developing rapidly, and we may expect to see
other impressive results in the near future.

18.9 Exercises

1. Given the grid world in figure 18.12, if the reward on reaching on the goal
is 100 and γ = 0.9, calculate manually Q∗(s, a), V∗(S), and the actions of
optimal policy.

2. With the same configuration given in exercise 1, use Q learning to learn the
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optimal policy.

3. In exercise 1, how does the optimal policy change if another goal state is
added to the lower-right corner? What happens if a state of reward −100 (a
very bad state) is defined in the lower-right corner?

4. Instead of having γ < 1, we can have γ = 1 but with a negative reward of −c
for all intermediate (nongoal) states. What is the difference?

5. In exercise 1, assume that the reward on arrival to the goal state is normal
distributed with mean 100 and variance 40. Assume also that the actions are
also stochastic in that when the robot advances in a direction, it moves in the
intended direction with probability 0.5 and there is a 0.25 probability that it
moves in one of the lateral directions. Learn Q(s, a) in this case.

6. Assume we are estimating the value function for states V(s) and that we want
to use TD(λ) algorithm. Derive the tabular value iteration update.

7. Using equation 18.22, derive the weight update equations when a multilayer
perceptron is used to estimate Q.

8. Give an example of a reinforcement learning application that can be modeled
by a POMDP. Define the states, actions, observations, and reward.

9. In the tiger example, show that as we get a more reliable sensor, the range
where we need to sense once again decreases.

10. Rework the tiger example using the following reward matrix

r(A,Z) Tiger left Tiger right

Open left −100 +10
Open right 20 −100
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19
Design and Analysis of Machine

Learning Experiments

We discuss the design of machine learning experiments to assess and

compare the performances of learning algorithms in practice and

the statistical tests to analyze the results of these experiments.

19.1 Introduction

In previous chapters, we discussed several learning algorithms and
saw that, given a certain application, more than one is applicable. Now,
we are concerned with two questions:

1. How can we assess the expected error of a learning algorithm on a
problem? That is, for example, having used a classification algorithm
to train a classifier on a dataset drawn from some application, can we
say with enough confidence that later on when it is used in real life, its
expected error rate will be less than, for example, 2 percent?

2. Given two learning algorithms, how can we say one has less error than
the other one, for a given application? The algorithms compared can
be different, for example, parametric versus nonparametric, or they
can use different hyperparameter settings. For example, given a multi-
layer perceptron (chapter 11) with four hidden units and another one
with eight hidden units, we would like to be able to say which one has
less expected error. Or with the k-nearest neighbor classifier (chap-
ter 8), we would like to find the best value of k.

We cannot look at the training set errors and decide based on those.
The error rate on the training set, by definition, is always smaller than
the error rate on a test set containing instances unseen during training.


