CSCI 1106
Lecture 05 |ﬂ|

Announcements

e Quizis tomorrow in class

 Today’s Topics
— Finish Collision Detection
— Motivation for player movement
— Mouse Movement
— Easing
— Keyboard Movement

Player Motion

e All interactive games have player movement
— Players can move their character or avatar on the screen
— Players can react to the game and move their avatar

 How the avatar moves is dictated by the game’s
— Laws and physics of the game
— Goals and objectives
— Environment and level of play

e Common ways to move the avatar are through
— Mouse
— Keyboard
— Dedicated game controllers and joysticks

A

Direct Mouse Movement

* |dea: Make the player the "mouse”
— The avatar appears where the mouse is pointing to
— No need to control the velocity of the avatar

— Position and velocity is managed by the mouse
movement

* How:

— Set the player sprite’s coordinates to the mouse
coordinates at each FRAME event

set x to mouse X

set y to mouse y

Direct Mouse Movement

* Pros:
— Easy
— Not much code required

e Cons:

— Restrictions on movement may be needed, e.g.,
* Disallowing movement in some dimensions (paddle)
e Checking if mouse is over the game panel area

— Violates most accepted laws of physics
e Avatar can accelerate and move instantly

* How can we solve these problems?

Mouse Movement using Easing

|Idea: gradually move avatar toward the location clicked on
with the mouse pointer

— A mouse click sets the target to move toward
— Calculate distance between the avatar and target
— Incrementally move the avatar toward the target

— Note: the avatar isn’t guaranteed to reach the target because
the target will change if another location is clicked first

Pros:

— Makes the physics of the game more realistic

— Restricts avatar movement by ignoring clicks on illegal areas of
the stage

Cons:
— Allows only coarse-grained movement

AC

Implementing Easing

Declare an EASING constant ¢ On each FRAME event

— O<EASING < 1 — If avatar's distance to
— Smaller constant implies slower “Target" is greater than 1
movement * point avatar at target
‘“ ” * move avatar an EASING
Cre.ate a transparent “Target fraction of the distance to the
sprite target

Set “Target"” at avatar’s location

On each FRAME event If the
mouse is down
Move“Target”

mouse down?

distance to Target > then

point towards Target
>

set X to mouse X
»

set y to mouse y move EASING * distance to Target steps

Keyboard based Movement

* |dea: Move the player with the keyboard
— The arrow keys control the direction that the avatar moves

— These directions allow the player to move diagonally as
well

— Need to respond to the KEY PRESS events or check if keys
are being pressed.

— More than one key can be down at the same time
* Pros:
— Very precise movement

e Con:
— Requires the player to learn the control keys

AC

Implementing Keyboard Controls

+ On a FRAME event R o e
— CheCk Wthh Of the tmove@steps

arrow keys are pressed == ,

. if key rightarrow pressed? _then
and move in that point 1 direction €D
d|reCt|0n [mave €D steps

up 0° P

key uparrow pressed? _then

point in direction {9
»

move L) steps

i 7‘ key downarrow pressed? _then

point in direction €T139

>

move L) steps

.06~ 149/
right 90°

down 180°

