2 Sensing, acting and control

2.1 Basic computer Vision

Cameras and other sensors that can sense physical objects in the environment, such
as infrared cameras to sense heat distributions or scanning sonars for underwater
applications, are an important source of sensory information. The main challenge with
such data is how to interpret them as we usually want to extract more meaningful
information from them such as recognizing objects or distances to obstacles. Vision is
a major sensory source for humans and our brain is specialized in interpreting signals
from our eyes. Machine learning has contributed considerably to recent progress in
computer vision including object tracking and object recognition. We will not enter
into this discuss here but rather show how to use a webcam with Matlab and how to
do basic operations on such acquired pictures of videos that typically form the first
stage of more sophisticated vision systems. These techniques will also become handy
in later experiment.

2.1.1 Acquiring data from webcams with Matlab

In order to process video streams, we will use Mathwork’s Image Acquisition Toolbox
in Matlab®. First we make sure the toolbox is installed in your Matlab version and
configured and describe commands to retrieve information of your specific system. To
do so, use the command

imaghwinfo
ans =

InstalledAdaptors: {’dcam’ ’gige’ ’macvideo’}
MATLABVersion: ’8.1 (R2013a)’
ToolboxName: ’Image Acquisition Toolbox’
ToolboxVersion: 4.5 (R2013a)’

More specific information can be obtained with

>> HD=imaghwinfo(’macvideo’)
HD =

AdaptorDl1lName: [1x85 char]
AdaptorDllVersion: 4.5 (R2013a)’

3There are also some alternatives, For example see http://www.mathworks.com/matlabcentral/fileexchange/35554-
simple-video-camera-frame-grabber-toolkit

28 | Sensing, acting and control

AdaptorName: ’macvideo’
DeviceIDs: {[1]1}
DeviceInfo: [1x1 struct]

More specific information of the supported video format and size can be obtained by
inspecting the previously ceated HD object,

HD.DeviceInfo(1)
ans =

DefaultFormat: ’YCbCr422_1280x720’
DeviceFileSupported: 0O
DeviceName: ’FaceTime HD Camera (Built-in)’
DevicelID: 1
VideoInputConstructor: ’videoinput(’macvideo’, 1)’
VideoDeviceConstructor: ’imaq.VideoDevice(’macvideo’, 1)’
SupportedFormats: {’YCbCr422_1280x720’}

Now we are ready to show how to create a video stream and to display it in a
Matlab figure window. On a windows system, likely the most common way to achieve
this is

1 stream = videoinput ('winvideo', 1);
2 preview(stream);

Under normal circumstances, a new window opens with a preview of the video
stream. Mac and Unix user should replace the string winvideo with macvideo or
unixvideo respectively. The number ofter this string represents the ID of the camera.
The build-in camera has usually ID=1, but you might need to specify another number
when you use an external camera. The string you should use is also specified in the
VideolnputConstructor line from the Devicelnfo command.

In order to process a frame in this video image we need to retrieve a single frame
from the video stream that we created previously. First, we specify the colorspace we
want to obtain, such as RGB, then get a snapshot from the video steam, and finally
display it with the imgshow command,

1 set (stream, 'ReturnedColorSpace', "rgb'");
2 frame = getsnapshot (stream);
3 imshow (frame) ;

The picture is stored as object frame in the Matlab Workspace. Its size depends on the
resolution of the webcam and the chosen colorspace. With a 720x1280 resolution and
in RGB for example, the obtained frame will be a 720x1280x3 uint8 object. As an
example to process this image directly with Matlab, let us extract the red component
and display this alone with the imshow command

1 frameGrey=frame(:,:,1);
2 imshow (framGrey)

Basic computer Vision | 29

3 \end{verbatim}

4 The reason that this image appears in grey is that the values
in the two dimensional matrix are now interpreted as grey
values.

6 Finally, in order to read continuously from a camera and
display the obtained frames in a loop one can use the
following program. Press the \textit{qg} key to terminate
the loop.

8 \begin{lstlisting}
9 close all; clear all;

11 stream=videoinput ('winvideo', 1) ;
12 triggerconfig(stream, 'manual');

14 VideoLoop=figure;
15 while true

16 frame=getsnapshot (stream);

17 imshow (frame) ;

18 $retrieves a keyboard interruption

19 key=get (gcf, 'currentkey');

20 %$1if the pressed key is 'qg', the loop is interrupted and
the figure closes

21 if strcmp (key, 'g')

22 close (VideoLoop) ;

23 break;

24 end

25 end

2.1.2 Image filtering with convolutions

Let us now start manipulating a singe grey image further. As a first example let us
created a new smoothened image I™°*" by averaging the pixels over a certain region,
say over a region of size 11 by 11 pixels. The value of a pixel at (z,y) of the new
image is then defined by us to be the average pixel values of an 11 x 11 image patch
around the centre pixel at (z,y),

1Mot (g y) = Z Z Iz —u,y —v). 2.1)

u=—5v=->5

In order to generalize this averaging procedure later to averages with different weights,
we define a matrix k(u,v) with indices v and v running between -5 and 5. All the
elements of this matrix are set to one, k(u,v) = 1, so that the above equation is
equivalent to

et (g, y) = Z Z Iz —u,y —v)k(u,v). (2.2)

The new image is a bit smaller than the original as the pixels at the edges don’t
have pixels on one side. We could adjust for this in various ways such as buffering
a surrounding are with with constants pixels or using periodic boundary conditions
where we add pixels from the other side of the matrix. We use the later in the following.

30 | Sensing, acting and control

Fig. 2.1 Original picture on the left and the filtered version with a uniform filter of size 40 x 40.

An example of such a procedure is shown in Fig. 2.1. On the left side is the original
image acquired with a webcam with 720 x 1280 pixels. On the right is a smoothened
version of it using the procedure just defined. The image is a bit more blurry, but
we will see that this will be useful for some of the applications below such as when
downsampling images or to reduce noise in the image.

The matrix k£ is called a kernel, and the operation described in eq.2.2 is called a
convolution. For a large number of pixels it is sometimes more convenient to describe
the image as a continuum, so that a convolution can be written as

[mean) = / / Iz — u,y — v)k(u, v)dudv. 2.3)

Of course, we can define convolutions in different dimensions, not just in the two
dimensional picture plane described here. By defining different kernel function we
can achieve different effects. For example, it might seem more natural to average an
image more smoothly, given nearby nodes more weight than distant nodes. This can
be achieved with a Gaussian kernel

1 —(u,)?
e o2 . (2.4)

k(u,v) =

(u,v) = —o—

Smoothing with Gaussian kernels is a common technique in computer vision, and the

resulting picture for our test image is shown in Fig. 2.1b. The kernel function also
defines a filter, and a convolution can be seen as a linear filtering operation.

Exercise

An example program that was used to produce the filter shown on the right in Fig. 2.1
is given below. This program uses the build in Matlab function conv2() to calculate
the 2-dimensional convolution. Write a Matlab function that replaces this function
and implements the convolution from scratch. Explain the black border in the filtered
image.

1 original=frame(:,:,1);
2 imshow (original)

Basic computer Vision | 31

filter=ones (40);

filtered=conv2 (filter,double (original));
filtered=filtered./max (max (filtered)) x255;
imshow (uint8 (filtered))

PN NV N N

2.1.3 Linear filtering: Finding a color blob

An easy way to localize some environmental object is by tagging it with some unique
colour and trying to detect this in the image. This will be used later for some exercises
in localization and planing. For the following exercise take some coloured electrical
tape of some other coloured material and attach it to the robot arm. We can first test
it statically, but we will later use it to detect the location of the arm when the arm is
moving.

To detect a certain colour in an image we need to process the colour channels.
We can write a little application that takes an image and in which we could point to a
location in the image to return the values. This program is shown in Table ??. (explain
program)

Once we have RGB value for the target colour we can use them to locate the colour
in a video stream. For this it is useful to take some of the absolute differences between
a video screen colour values and the target values. Small values indicate pixels close
to the target colour. Since the target area corresponds to a cluster of such pixels, we
could use an averaging method such as Gaussian smoothing followed by finding the
minimum to locate the centre of the target area.

An alternative to the colour method for finding the position of the robot arm it
motion segmentation. Segmentation of an image is an important step in building scene
representations, and the following sections talks about some methods that commonly
build the basis of segmentation for still images. The beauty of video streams is that
there is more information in it that we can use for segmentation. In the example with
the robot arm, we assume that only the robot arm is moving. We can therefore use
differences of video captures in consecutive frames to determine the moving object.

Finally we want to translate the tracking of the robot arm to a number representing
the degrees of rotation of the upper motor of the robot arm. For this we will use machine
learning techniques. The first is to use linear regression on the motion segmented robot
arm. The other is to use the support vector regression to map the (x,y) coordinates
to rotation angles. Note that both cases correspond to supervised learning that require
measurements that we will use as teacher signals.

Exercise

e Write a program to locate a colour blob in a video stream and indicate this target
location with a circle. Similarly, use as an alternative motion segmentation and
compare the location estimation in form of a pixel coordinate between the two
methods.

32 | Sensing, acting and control

e Write a program that translates a pixel coordinate to the estimation of the rotation
angle of the motor and compare the location estimation of the two segmentation
methods with the coordinates returned by the motors.

2.1.4 Gradient filters: Edge detection

While Gaussian smoothing is useful for noise reduction, it does not help us much
with the identification of objects. To work towards such a goal we should recognize
that objects are somewhat defined by their extensions, and the borders of objects are
typically characterized by edges in a two-dimensional image. It is hence useful to think
about how to build filters that highlight edges. For example, let us consider an image
with a sharp vertical edge like the one give by the matrix

100 100 100 10 10 10
100 100 100 10 10 10
100 100 100 10 10 10
100 100 100 10 10 10

I =

and lets convolve this with the filter k = (1, —1) the resulting image is

009000
Jredge _ [009000
009000
009000

Similar, let us consider an image with a horizontal edge

100 100 100 100 100 100
100 100 100 100 100 100
10 10 10 10 10 10
10 10 10 10 10 10

"=

and the filter k = (_11) . The resulting image highlights a horizontal edge
00000
1v4&e = 90 90 90 90 90
00000

Of course, edges in our webcam pictures are never this sharp, and it is hence useful to
smoothen them. A continuous version of edge filters is for example described by Gabor
functions such as the ones shown in Fig. 2.2a and b. A Gabor function is described by
a sinosodally-moduated Gaussian,

u?4yv?

2
k(u,v) = e 2wo? cos(%u + a). (2.5)

The example of a 64 bit filter with parameters v = 0.5, 0 = 10, A = 32, and o = 7/2
is shown in Fig. 2.2a. This filter can also be rotated with a rotation matrix

Building and driving a basic Lego NXT robot | 33

(1) (Lomten st () @

as shown in Fig. 2.2b for o = 7. The figure also includes an example of applying these
filters to an image from a webcam.

A. Gabor function with \phi = \pi/2 B. Rotated version of A

Fig. 2.2 Example of Gabor functions for (a) vertical and (b) horizontal edge detection. (c) Original
image. (d) Filter Image using filters in (a) and (b).

Exercise

Take an image of your choosing and use Gabor filters to filter the image. Show the
resulting image with different angular parameter.

2.2 Building and driving a basic Lego NXT robot
2.2.1 Arm and Tribot

We will actively use the Lego Mindstorm robotics system in this course. This system
is based on common Lego building blocks that we use for two principle designed
that we build below. The Lego NXT robotics system includes a microprocessor in a
unit called the brick which can be programmed and used to control the sensors and
actuators. The brick is programmable with a visual programming language provided
by Lego, and there exists a multitude of systems to program the brick with other
common programming languages. We will be using the brick mainly to communicate
with the motors and sensors while implementing the machine learning controllers on
an external computer connected by either USB cable or wireless bluetooth.

We will be using two basic robot designs for the examples in this course. One is
a simple robot arm that is made out of two motors with legs to mount it to a surface
and a pointer as shown in Fig.2.3 A. Our basic robot arm is constructed by attaching
the base of one motor, that we call elbow, to the rotating part of a second motor, that
we call the shoulder, as shown in Fig.2.3A. We also attach a long pointer extension to

34 | Sensing, acting and control

elbow that will become useful in some later exercises. Finally, we add some legs that
we can be taped to a table surface in order to stabilize Motor2 to a fixed position. The
precise design is not crucial for most of the exercises as long as it can rotate freely
both motors.

We will also use a basic terrestrial robot called the tribot shown in Fig.2.3B. The
tribot used here is a slight modification of the standard tribot as described in the Lego
NXT robotics kit. A detailed instruction for building the basic tribot is included in the
Lego Kkits, either in the instruction booklet or the included software package. It is not
crucial that all the parts are the same. The principle idea behind this robot is to have
a base with two motors to propel the tribot. and several sensors attached to it. There
is commonly a third passive wheel that is only used to stabilize the robot, and we
included a way to lock it to a straight position to facilitate cleaner movements along a
straight line. Some versions of Lego kits have tracks that can be used in most of the
exercises. The exact design is not critical and can be altered as seen fit.

A. Robotarm with attached B. Tribot with ultrasonic, touch
dawing pen and light sensor

Fig. 2.3 (A) A robot arm made out of two motors, shoulder and elbow, a pointer arm, and some
support to tape it to a table surface. This version has also a pen attached to it. (B) Basic Lego
Robot called tribot with the microprocessor, two motors, and three sensors, including a ultrasonic
and touch sensor pointing forward and a light sensor pointing downwards.

2.2.2 NXT Matlab Software Environment

The ‘brain’ of our robots will be implemented on PCs and we will use a Matlab
environment to implement our high-level controllers. Most examples are minimalistic
in order to concentrate on the algorithmic ideas behind machine learning methods
explored in this book. While there are more advanced robotics environments with
more elaborate frameworks such as ROS (Robot Operating System), we want to keep
the overhead small by using only direct methods to communications with actuators

