
1 Markov Decision Process

This chapter is an introduction to a generalization of supervised learning where feed-
back is only given, possibly with delay, in form of reward or punishment. The reward is
not necessarily a single value, but it is typically not a specific of precisely what actions
should have been taken. The goal of this reinforcement learning is for the agent to
figure out which actions to take to maximize future payoff (accumulation of rewards).
In this chapter we introduce the general idea and basic formulation of such a problem
domain, and will then concentrate on the case of a Markov Decision Process (MDP).
Such a process is characterized by a transition process that only depends only on the
last state of the agent, and we also consider that we know in which state the agent is
in. In the next chapters this will be extended to a framework for partially observable
situations and temporal difference (TD) learning.

1.1 Learning from reward and the credit assignment
problem

We discussed in previous chapters supervised learning in which a teacher showed an
agent the desired response y to a given input state x. We are now moving to the
problem when the agent must discover the right action to choose and only receives
some qualitative feedback from the environment such as reward or punishment at a
later time. The reward feedback does not tell the agent directly which action to take.
Rather, it indicates how valuable some sequences of states and action are. The agent has
to discover the right sequence of actions to optimize the reward over time. Choosing
the right action of an agent is traditionally the subject of control theory, and this subject
is thus often discussed in the context of optimal control.

Reward learning introduces several challenges. For example, in typical circum-
stances reward is only received after a long sequence of actions. The problem is then
how to assign the credit for the reward to specific actions. This is the temporal credit
assignment problem. To illustrate this, let us think about a car that crashed into a
wall. It is likely that the driver used the breaks before the car crashed into the wall,
though the breaks could not prevent the accident. However, from this we should not
conclude that breaking is not good and lead to crashes. In some distributed systems
there is, in addition, a spatial credit assignment problem which is the problem of
how to assign the appropriate credit when different parts of a system contributed to a
specific outcome or which state and action combinations should be given credit for the
outcome.

Another challenge in reinforcement learning is the balance between exploitation
and exploration. That is, we might find a way to receive some small food reward
if we repeat certain actions, but if we only repeat these specific actions, we might
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never discover a bigger reward following different actions. Some escape from self-
reinforcement is important.

The idea of reinforcement learning is to use the reward feedback to build up a
value function that reflect the expected future payoff of visiting certain states and
taking certain actions. We can use such a value function to make decisions of which
action to take and thus which states to visit. This is called a policy. To formalize these
ideas we start with simple processes where the transitions to new states depend only on
the current state. A process which such a characteristics is called a Markov process.
In addition to the Markov property, we also assume in this chapter that the agent has
full knowledge the environment. Finally, it is again important that we acknowledge
uncertainties and possible errors. For example, we can take error in motor commands
into account by considering probabilistic state transitions.

1.2 The Markov Decision Process

Before formalizing the decision processes in this chapter, let us begin with an example
to illustrate a common setting. In this example we consider an agent that should learn to
navigate through the maze shown in Figure 1.1. The states of the maze are the possible
discrete positions that are simply numbered consecutively in this example, that is,
S = {1, 2, ..., 18}. The possible actions of the agent is to move one step forward,
either to the north, east, south or west, that is, A = {N,E, S,W}. However, even
though the agents gives these commands to its actuators, stochastic circumstances –
such as faulty hardware or environmental conditions (e.g. some instructor ‘kicking’
the agent) – make the agent end up in different states with certain probabilities. The
probabilities are specified by a transition matrixT (s′|s, a). For example, the probability
of following actions a = N might just be 80% as it might end up in the west state
(taking actions a = W ) or the east state (taking action and a = E) in 10% of the
cases each and never goes erroneously south. We assume for now that the transition
probability is given explicitly, although in many practical circumstances we might need
to estimate this from examples (e.g. supervised learning). In the maze as illustrated in
Figure 1.1, some of the states are not reachable as they represent a wall. We can take
this into account by making the transition matrix state dependent.

The agent is given reward or punishment when the agent is moving into a new state
s. For example, we can consider a deterministic reward function in which the agent
is given a large reward when finding the exit to the maze (r(18) = 1 in the example
of Figure 1.1). In practice it is also common and useful to give some small negative
reward to the other states. This could, for example, represent the battery resource that
the Lego robot consumes when moving to a cell in the grid, whereas it gets recharged
at the exit of the maze.

A common approach to solve a deterministic maze navigation problem is path
planing based on some search algorithms such as the A∗ search algorithm. However,
the environment here is stochastic. The probabilistic nature of the state transition is
challenging for traditional search algorithms, although this can be accomplished with
some dynamic extensions of the standard search algorithms. In addition the task might
not be known to the agent explicitly. In other words, the agent must discover by itself
the task of completing the maze. The great thing about reinforcement learning is that
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Fig. 1.1 A maze where each state is rewarded with a value r.

we can apply the such a learning system to many different situation by guiding the
system with reward feedback. We can even change the task by changing the reward
feedback. There should be no need to change anything in the program of the agent.
Such training is typical when training animals as reward feedback is usually the main
way to communicate with the animals in learning situations since we can not verbally
communicate the goal of the task that we have in mind.

We now formalize such an environment as a Markov Decision Process (MDP). A
MDP is characterized by a set of 5 quantities, expressed as (S,A, T (s′|s, a), R(r|s, a), θ).
The meaning of these quantities are as follows.
• S is a set of states.
• A is a set of actions.
• T (s′|s, a) is a transition probability, for reaching state s′ when taking action
a from state s. This transition probability only depends on the previous state,
which is called the Markov condition; hence the name of the process.
• R(r|s, a) is the probability of receiving reward when getting to state s. This

quantity provides feedback from the environment. r is a numeric value with
positive values indicating reward and negative values indicating punishment.

• θ are specific parameters for some of the different kinds of RL settings. This
will be the discount factor γ in our first examples.

An MDP is fully determined by these 5 quantities that characterize the environment
completely.

1.3 Value functions and policies

To make decisions we define two quantities that will guide the behaviour of an agent.
The first quantities is the value function Qπ(s, a) that specifies how valuable state s
is under the policy π for different actions a. This quantity is defined as the expected
future reward as formalized below. The second quantity is the policy π(a|s) which
is the probability of choosing action a from state s. Note that we have kept the
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formulation here very general by considering probabilistic rewards and probabilistic
policies, although some applications can be formulated with deterministic functions
for these quantities. Since the action is uniquely specified for deterministic policies,
one can use the state value function V π(s). Note that this function is still specific for
an action as specified by the policy a = π(s). The functionQπ(s, a) is often called the
state-action value function to distinguish it from V π(s). Finally, we consider here
rewards that only depend on the state. In same rare cases reward might depend on the
way a state is reached, in which case the reward probability can be easily extended to
R(r|s,a).

Reinforcement learning algorithms are aimed at calculating or estimating value
functions to determine useful actions. However, most of the time we are mostly inter-
ested in finding the best or optimal policy. Since choosing the right actions from states
is the aim of control theory, this is sometimes called optimal control. The optimal
policy is the policy which maximizes the value (expected reward) for each state. Thus,
if we denote the maximal value as

Q∗(s, a) = max
π

Qπ(s, a), (1.1)

the optimal policy is the policy that maximizes the expected reward,

π∗(a|s) = argmax
π

Qπ(s, a). (1.2)

While direct search in the space of all possible policies is possible in examples with
small sets of states and actions, a major problem of reinforcement learning is the
exploding number of policies and states with increasing dimension. This was termed the
‘course of dimensionality’ by Richard Bellman. Solving the course of dimensionality
problem is a major challenge for practical applications. We will get back to this point
later.

We have not yet specified how we define the values. The value function is defined as
the expected value of all future rewards, also called the total payoff. The total payoff is
the sum of all future reward, that is, the immediate reward of reaching state s as well as
the rewards of subsequent states by taking the specific actions under the policy. Let us
consider the specific episode of consecutive states s1, s2, s3, ... following s. Note that
the states sn are functions of the starting state s and the actual policy. The cumulative
reward for this specific episode when visiting the consecutive states s1, s2, s3, ... from
the starting state s under policy π is thus

r∞(s) = r(s) + r(s1) + r(s2) + r(s3) + .... (1.3)

One problem with this definition is that this value could be unbounded as it runs over
infinitely many states into the future. A possible solution of this problem is to restrict
the sum by considering only a finite reward horizon, for example by only consider
rewards given within a certain finite number of steps such as

r4(s) = r(s) + r(s1) + r(s2) + r(s3). (1.4)

Another way to solve the infinite payoff problem is to consider reward that is discounted
when it is given at later times. Considering a discount factor 0 < γ < 1 for each step,
we have a total payoff
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rγ(s) = r(s) + γr(s1) + γ2r(s2) + γ3r(s3) + .... (1.5)

Such discounting makes sense when we value immediate reward somewhat more than
reward in the future. But large rewards in the future can still have a considerable
influence on values.

Since we consider probabilistic state transitions, policies and rewards, we can only
estimate the expected value of the total payoff when starting at state s and taking
actions according to a policy π(a|s). We denote this expected value with the function
E{Rγ(s)}π . The expected total discounted payoff from state s when following policy
π is thus

Qπ(s, a) = E{r(s) + γr(s1) + γ2r(s2) + γ3r(s3) + ...}π. (1.6)

This is called the value-function for policy pi. Note that this value function not only
depends on a specific state but also on the action taken from state s since it is specific
for a policy. We will now derive some methods to estimate the value-function for a
specific policy before discussing methods of finding the optimal policy.

1.4 The Bellman equation

1.4.1 Bellman equation for a specific policy

With a complete knowledge of the system, that includes a perfect knowledge of
the state the agent is in as well as the transition probability and reward function, it
is possible to estimate the value function for each policy π from a self-consistent
equation. This was already noted by Richard Bellman in the mid 1950s and is known
as dynamic programming. To derive the Bellman equations we consider the value
function, equation 1.6 and separate the expected value of the immediate reward from
the expected value of the reward fro visiting subsequent states,

Qπ(s, a) = E{r(s)}π + γE{r(s1) + γr(s2) + γ2r(s3) + ...}π. (1.7)

The second expected value on the right hand side is that of the value function for state
s1, but state s1 is related to state s since state s1 is the state that can be reached with
a certain probability from s when taking action a1 according to policy π, for example
like s1 = s + a1 and sn = sn−1 + an. We can incorporate this into the equation by
writing

Qπ(s, a) = r(s)+γ
∑
s′

T (s′|s, a)
∑
a′

π(a′|s′)E{r(s′)+γR(s′1)+γ2R(s′2)+ ...}π,

(1.8)
where s′1 is the next state after state s′, etc. Thus, the expression on the right is the state-
value-function of state s′. If we substitute the corresponding expression of equation
1.6 into the above formula, we get the Bellman equation for a specific policy, namely

Qπ(s, a) = r(s) + γ
∑
s′

T (s′|s, a)
∑
a′

π(a′|s′)Qπ(s′, a′). (1.9)
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In the case of deterministic policies, the action a is given by the policy and the value
function Qπ(s, a) reduces to V π(s). In this case the equation simplifies to

V π(s) = r(s) + γ
∑
s′

T (s′|s, a)V π(s′). (1.10)

Such a linear equation system can be solved with our complete knowledge of the
environment. In an environment with N states, the Bellman equation is a set of N
linear equations, one for each state, with N unknowns which are the expected value
for each state. We can thus use well known methods from linear algebra to solve for
V π(s). This can be formulated compactly with Matrix notation,

r = (11− γT)Vπ, (1.11)

where r is the reward vector, 11 is the unit diagonal matrix, and T is the transition
matrix. To solve this equation we have to invert a matrix and multiply this with the
reward values,

Vπ = (11− γT)−1rt, (1.12)

where rt is the transpose of r
Note that the analytical solution of the Bellman equation is only possible because

we have complete knowledge of the system, including the reward function r, which
itself requires a perfect knowledge of the state in which the agent is in. Also, while
we used this solution technique from linear algebra, it is much more common to use
the Bellman equation directly and calculate a state-value-function iteratively for each
policy. We can start with a guess V for the value of each state, and calculating from
this a better estimate

V← r+ γTV (1.13)

until this process converges. We mainly use this iterative approach, although an example
of using the analytical example is given below.

1.4.2 Policy iteration

The equations above depends on a specific policy. As mentioned above, in many cases
we are mainly interested in finding the policy that gives us the optimal payoff and we
could simply search for this by considering all possible policies. But this is usually
not practical in most but a small number of examples since the number of possible
policies is equal to the number of actions to the power of the number of states. This
explosion of the problem size with the number of states is one of the main challenges in
reinforcement learning and was termed curse of dimensionality by Richard Bellman.

A much more efficient method is to incrementally find the value function for a
specific policy and then use the policy which maximizes this value function for the
next round. The policy iteration algorithm is outlined in Figure 1.2. In addition to
an initial guess of the value function, we have now also to initialize the policy, which
could be randomly chosen from the set of possible actions at each state. For this policy
we can then calculate the corresponding value function according to equation 1.9. This
step corresponds to an evaluation of the specific policy. The next step is to take this
value function and to calculate the corresponding best set of actions for it. Of course,
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the best actions to take for a specific value function is to take the action from each
state that maximize the corresponding future payoff. The corresponding set of actions
for each state is then the next candidate policy. These two steps, the policy evaluation
and the policy improvement are repeated until the policy does not change any more.

Choose initial policy and value function
Repeat until policy is stable {

1. Policy evaluation
Repeat until change in values is sufficiently small {

For each state {
Calculate the value of neighbouring states when taking

action according to current policy.
Update estimate of optimal value function.

 V π

equation 1.9

} each state
} convergence

2. Policy improvement
new policy according to equation 1.21, assuming V ∗ ≈ current V π

} policy

Fig. 1.2 Policy iteration with asynchronous update.

To demonstrate this scheme for solving MDPs, we will follow a simple example,
that of a chain of N states. The states of the chain are labeled consecutively from left
to right, s = 1, 2, ..., N . An agent has two possible actions, go to the left (lower state
numbers; a = −1), or go to the right (higher state numbers; a = +1). However, in P
cases the system responds with the opposite move from the intended. The last state in
the chain, state numberN , is rewarded with r(N) = 1, whereas going to the first state
in the chain is punished with r(1) = −1. The reward of the intermediate states is set
to a small negative value, such as r(i) = −0.1, 1 < i < N . We consider a discount
factor γ.

The transition probabilities T (s′|s, a) for the chain example are zero expect for the
following elements,

T (1|1,−1) = 1 (1.14)
T (N |N,+1) = 1 (1.15)

T (s− a|s, a) = 1− P (1.16)
T (s+ a|s, a) = P (1.17)

The first two entries specify the ends of the chain as absorbing boundaries as the
agent would stay in this state one it reaches these states. We can also write this as two
transfer matrices, one for each possible actions. For a = 1 this is,



Markov Decision Process8 | 
1 · · · · · · 0
...

...
0 · · · 0 1− P 0 P 0 · · · 0
...

...
0 · · · · · · 1

 (1.18)

and for a = −1 this is 
1 · · · · · · 0
...

...
0 · · · 0 P 0 1− P 0 · · · 0
...

...
0 · · · · · · 1

 (1.19)

The corresponding Matlab code for setting up the chain example is
% Chain example:

% Policy iteration with analytical solution of Bellman equation

clear;

N=10; P=0.8; gamma=0.9; % parameters

U=diag(ones(1,N)); % unit diaogonal matrix

T=zeros(N,N,2); % transfer matrix

r=zeros(1,N)-0.1; r(1)=-1; r(N)=1; % reward function

T(1,1,:)=1; T(N,N,:)=1;

for i=2:N-1;

T(i,i-1,1)=P;

T(i,i+1,1)=1-P;

T(i,i-1,2)=1-P;

T(i,i+1,2)=P;

end

The policy iteration part of the program is then given as follows:
% random start policy

policy=floor(2*rand(1,N))+1; %random vector of 1 (going left) and 2 (going right)

Vpi=zeros(N,1); % initial arbitrary value function

iter = 0; % counting iteration

converge=0;

% Loop until convergence

while ~converge

% Updating the number of iterations

iter = iter + 1;

% Backing up the current V

old_V = Vpi;

%Transfer matrix of choosen action

Tpi=zeros(N); Tpi(1,1)=1; T(N,N)=1;

for s=2:N-1;

Tpi(s,s-1)=T(s,s-1,policy(s));
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Tpi(s,s+1)=T(s,s+1,policy(s));

end

% Calculate V for this policy

Vpi=inv(U-gamma*Tpi)*r’;

% Updating policy

policy(1)=0; policy(N)=0; %absorbing states

for s=2:N-1

[tmp,policy(s)] = max([Vpi(s-1),Vpi(s+1)])

end

% Check for convergence

if abs(sum(old_V - Vpi)) < 0.01

converge = 1;

end

end

iter, policy

The whole procedure should be run until the policy does not change any more. This
stable policy is then the policy we should execute in the agent.

1.4.3 Bellman equation for optimal policy and value iteration

Instead of using the above Bellman equation for an arbitrary value function and
then calculating the optimal value function, we can also derive a version of Bellman’s
equation for the optimal value function itself. This second kind of a Bellman equation
is given by

V ∗(s) = r(s) + max
a

γ
∑
s′

T (s′|s, a)V ∗(s′). (1.20)

The max function is a bit more difficult to implement in the analytic solution, but
we can again easily use and iterative method to solve for this optimal value function.
This is called value iteration. Note that this version includes a max function over all
possible actions in contrast to the Bellman equation for a given policy, equation 1.9.
As outlined in figure 1.3, we start again with a random guess for the value of each state
and then iterate over all possible states using the Bellman equation for the optimal
value function, equation 1.20. More specifically, This algorithm takes an initial guess
of the optimal value function, typically random or all zeros. We then iterate over the
main loop until the change of the value function is sufficiently small. For example, we
could calculate the sum of value functions in each iteration (t) and then terminate the
procedure if the absolute difference of consecutive iterations is sufficiently small, that
is if |

∑
s V
∗
t (s)−

∑
s V
∗
t−1(s)| <threshold. In each of those iterations, we iterate over

all states and update the estimated optimal value functions according to equation 1.20.
Finally, after convergence of the procedure to get a good approximation of the

optimal value function, we can calculate the optimal policy by considering all possible
actions from each state,

π∗(s) = argmax
a

∑
s′

T (s′|s, a)V ∗(s′), (1.21)

which should be used by an agent to achieve good performance.
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Choose initial estimate of optimal value function
Repeat until change in values is sufficiently small {

For each state {
Calculate the maximum expected value of neigh-

bouring states for each possible action.
Use maximal value of this list to update estimate

of optimal value function.

 V ∗

equation 1.20

} each state
} convergence
Calculate optimal value function from equation 1.21

Fig. 1.3 Value Iteration with asynchronous update.

The state iteration can be done in various ways. For example, in the sequential
asynchronous updating schema we update each state in sequence and repeat this pro-
cedure over several iterations. Small variations of this schema are concerned with how
the algorithm iterates over states. For example, instead of iterating sequentially over
the states, we could also use a random oder. We could also first calculate the maximum
value of neighbours for all states before updating the value function for all states with
an synchronous updating schema. Since it can be shown that theses procedure will
converge to the optimal solution, all these schemas should work similarly well though
might differ slightly for particular examples. Important is, however, that the agent goes
repeatedly to every possible state in the system. This can be time consuming, but it
works if we have complete knowledge of the system since we do not really perform
the actions but can sit and calculate the solution for planing movements. It also works
well in the examples with small state spaces but can be problematic for large state
space.

The previously discussed policy iteration has some advantages over value iterations.
In value iteration we have to try out all possible actions when evaluating the value
function, and this can be time consuming when there are many possible actions. In
policy iteration, we choose a specific policy, although we have then to iterate over
consecutive policies. In practice it turns out that policy iteration often converges fairly
rapidly so that it becomes a practical method. However, value iteration is a little
bit easier and has more similarities to the algorithms discussed below that are also
applicable to situations where we do not know the environment a priori.

Exercise:

Implement the value iteration for the chain problem and plot the learning curve (how
the error changes over time), the optimal value function, and the optimal policy. Change
parameters such as N , γ, and the number of iterations and discuss the results.

Exercise:

Solve the Russel&Norvig grid with the policy iteration using the basic Bellman func-
tions iteratively, and compare this method to the value iteration.


