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ABSTRACT: 
 

One of the challenges in machine learning is the 
classification of datasets with ambiguous instances. 
In this paper we study specifically datasets with 
examples that have overlapping feature values for 
different classes.  In these circumstances there is a 
bound on the classification performance.  While 
there seems to be a race for accuracy, very little has 
been done to understand and solve the issues related 
to ambiguous data where the possible classification 
performance is limited.  We discuss the use of 
SVMs in a proposed scheme to handle classification 
in such problem domains.  A new approach is 
offered that tries to separate ambiguous data from 
the data that are much simpler to classify in order to 
prevent their influence on the classification process.  
We demonstrate that by separating the ambiguous 
data, although we lose some data, the performance 
of the classification increases significantly.  In 
contrast to previous findings with some other 
classifiers, our experimental results show that the 
performance of SVM classifiers on cleaned data is 
not affected significantly when there are some 
atypical points in the training data.  
 
Keywords: ambiguous data, atypical, outliers, 
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1. INTRODUCTION 
 
Atypical data is often a source of concern in any 
classification process.  Atypicality can show itself in 
different ways.  Outliers, as one kind of atypical 
data, have attracted researchers’ attention for a long 
time.  Ripley [1] defines outliers as “examples 
which did not (or thought not to have) come from 
the assume population of examples.”   Barnett and 
Lewis [2] have almost the same definition for 
outliers: “an observation (or subset of observations) 

which appear to be inconsistent with the remainder 
of the set of data.”  Most definitions of outliers 
specify that such examples raise the suspicion that 
they are from a different distribution than the rest of 
the dataset.   
 
Ambiguous data due to overlapping feature values, 
as we define here, is a different type of atypicality.  
Unlike outliers, ambiguous data do not show any 
inconsistency with the other datapoints in the same 
class. Thus, techniques like residual analysis and 
different distance measures like Cook’s distance [3] 
cannot distinguish them.   
 
One specific example of ambiguous data with 
overlapping samples that cause a serious problem to 
the classification task is shown in Figure 1.  Figure 
1A shows a training dataset with two attributes and 
50 datapoints for each of two classes.  The first 
attribute, x1, varies uniformly within the interval [-
0.8, 0.2] for class 1 and [-.02, 0.8] for class 2.  The 
second attribute, x2, is also uniformly distributed 
within [0, 1] and is included only to help to 
demonstrate the data.  Due to the overlapping 
attribute values in x1, there is no way to train an 
algorithm to classify the datapoints in the region x1 
= [-0.2, 0.2] because data points in this region have 
equal probability to belong to either of the two 
classes.  Thus, even if an algorithm produces no 
error in the training set, the upper bound in 
classification performance in this example is only 
80%; 100% in the non-overlapping regions, and 
50% in the overlapping region. 
 
Figure 1B shows the result of training a support 
vector machine (SVM) applying a RBF kernel 
function; all training examples are correctly 
classified.  Figure 1C shows the result of applying 
the trained SVM on test data; only 80% of the data 
were classified correctly.  
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Figure 1.  Example of uniformly distributed overlapping samples. (A): training data; circles are class 1 and squares 
are class 2. (B): The classification of training data. (C): The classification of test data; false classifications are 
marked with solid symbols. 

 
 
Different schemes have been suggested to work 
with atypical data.  One approach is to perform an 
unsupervised learning on them.  This includes 
clustering methods as a preprocessing technique and 
1-class SVM [4].  The other approach is to use a 
hybrid system [5] to detect and classify them.  
Trappenberg and Back [6] have suggested the idea 
of adding a new class IDK (I Do not Know) to the 
number of target labels, and to classify atypical 
points into the IDK class. 
 
The scheme we propose here is different from the 
previous ones in that the atypical points are tried to 
be kept separate from the rest of the dataset.  Since 
atypical points are often highly influential, keeping 
them within the same dataset may cause the 
misclassification of some of the regular datapoints.  
This was motivated by the previous findings [6] that 
the performance of a separation scheme is better 
than a straight forward classification due to reducing 
the effect of the presence of atypical examples on 
the classification process.  This scheme is explained 
in section 2, the implementation issues, the results 
of our experiments, and a discussion are presented 

in sections 3, 4 and 5 respectively, before 
concluding in section 6. 
 
 

2. SEPARATION SCHEME 
 

The following scheme explains our approach.  The 
scheme is general enough to work for both outliers 
and ambiguous data but we only target ambiguous 
data here. 
 
On training data: 

1. Train classifier 1 using all the training data. 
2. Use the information from classifier 1 to 

divide all points into 2 classes: A (typical) and 
B (atypical).   

3. Train classifier 2 on the training data with 
new labels (A and B); classifier 2 is atypical 
detector (separator). 

4. Train an additional classifier 3 on only A 
(typical data) using their original labels.   

 
On test data: 



5. Use classifier 2 to remove potential atypical 
data from the test set (cleaning test data): 2 
classes A1 and B1. 

6. Use classifier 3 for the classification of A1 
data. Use original labels to calculate the 
performance measures. 

  
In the second step above, we use some measure to 
separate the ambiguous datapoints.  This can be 
done by, for instance, assigning a threshold on 
posterior probability in probabilistic classifiers, the 
number of same-class datapoints found in a KNN 
algorithm [6], or choosing the bounded support 
vectors (BSVs) in the case of a SVM [7].  The 
function of classifier 2 is to separate the ambiguous 
data from the typical ones. In the experiments 
reported below we calculate in addition to the 
performance of classifier 3 (SVM3 in this study) in 
step 6, the performance of classifier 1 (SVM1 in this 
study) in the same step in order to compare the 
performance of these two classifiers. We expect that 
the performance of SVM3 is considerably higher 
than SVM1. 
 
We calculate a curve that shows the coverage versus 
performance (CP curve) to find out how many and 
which datapoints to take away form a dataset to 
have a better classification on the clean (typical) 
data.  In general, a CP curve is calculated by first 
taking away some minimum number of atypical 
examples in step 2, finishing through step 6, and 
repeating this process from step 1 to take away 
some more potentially atypical points from the 
training set.  The reason for such a gradual approach 
is that (1) atypical datapoints are usually influential 
and training should be done for any new subset of 
training data; and (2) we do not know, in advance, 
which points are atypical.  Coverage is calculated 
from the test data as coverage = (number of 
examples in class A1) / (total number of examples 
in test data). 
 
 

3. IMPLEMENTATION 
 
Every classification algorithm that can somehow 
distinguish atypical data from regular data can be 
used in the above scheme.  SVMs attracted much 
attention in recent years particularly in the area of 
classification [8] and novelty detection [4].  A SVM 
was used in this study because of its generally high 
performance, and the possibility that it can be tuned 

to generate different number of BSVs within a 
dataset by changing the regularization parameter C.  
In the case of a ν–SVM, one can change the value of 
ν in every iteration of the above scheme to generate 
a CP curve.  ν is an upper bound on the fraction of 
outliers and a lower bound on the fraction of support 
vectors [9]. 
 
An RBF kernel function was used within the SVM.  
To obtain a good performance, two parameters have 
to be chosen carefully.  These parameters include C 
and σ.  C determines the tradeoff between training 
error and minimizing model complexity; and 
parameter σ of the RBF function defines the 
nonlinear mapping from input space to some high 
dimensional feature space.  
 
We take a fixed σ (obtained initially by parameter 
optimization) and apply different C values.  Each C 
value gives a different number of BSVs on the train 
data.  BSVs are the most qualified candidates for 
being atypical datapoints if their number is chosen 
properly.  This is because they have the largest 
Lagrange multipliers [7].  Note that the number of 
atypical points is often unknown and that a CP 
curve can be used to estimate it. 
 
Each time a new C is chosen, we start from step 1 
(training with all training data).  Thus, points on the 
CP curve are independent of each other. We found 
that the resulting coverage by varying C is very 
sensitive to the C value, leading to clusters with 
examples around large and small coverage values.  
In practice we repeated the experiments with 
different datasets many times so that a sufficient 
number of examples for intermediary coverage 
values were found. A better tuning to intermediary 
coverage values might be obtained with ν–SVMs. 
This issue is worth studying in more detail in future 
work. 
 
 

4. EXPERIMENTAL RESULTS 
 

Two generated datasets were used in the 
experiments.  One was derived from uniformly 
distributed data as described in section 1. The 
second dataset was derived from normally 
distributed data (Gaussian).  For Gaussian data, x1 
has the variance of σ2 = 1 and the mean values of  -1 
and 1 for class 1 and class 2, respectively.  The 



second attribute, x2, is also uniformly distributed 
within [0, 1]. 
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Figure 2.  Coverage performance (CP) curves.  Curves without markers are theoretical limits and the ones with 
markers are experimental results for normally distributed data (A) and uniformly distributed data (B). 

 
 
In Figure 2, there are two sets of CP curves 
representing the results from the datasets with 
normally distributed (A) and uniformly distributed 
data (B).  In each of these results, the set of 
monotonically increasing curves represent the 
performance as measured by the number of correct 
classifications relative to the number of classified 
examples (clean data).  In contrast, the decreasing 
curves represent the performance as measured by 
the number of correct classifications relative to the 
number of all examples, including non-classified 
examples.  In other words, the non-classified data 
are simply considered as misclassifications in this 
performance measure.  Other choices of 
performance measures, which give different weights 
to the accuracy and non-classification of data, are 
possible and depend on the specific application [10].  
The curves above thus represent the bounds on any 
reasonable performance measure.  
 
The solid lines without any marker on them 
represent the theoretical limits of the performance 
measures, which can be calculated analytically for 
these examples.  These theoretical limits were 
calculated considering the known distributions of 
the generated datasets and applying the rule that the 
class with the largest posterior probability, provided 
that it is larger than some threshold, is chosen as the 

predicted class.  Examples without a posterior 
probability larger than the set threshold value are 
considered as ambiguous. Thus, by changing the 
threshold value we get different coverage values. 
The performance for these coverage values can be 
calculated from the posterior probabilities of the 
classified data.  
 
The results of the SVM classifications are shown 
with different symbols that are interpolated by lines. 
y1 and y2 represents the results of SVM3.  y1 
(circles) is the performance when taking only the 
number of clean datapoints into account, whereas y2 
(squares) represents the performance evaluated 
relative to all datapoints.  y2 can also be calculated 
by y2 = (coverage.* y1).  
 
y3 (asterisks) represents the performance of SVM1 
when taking only the clean data in the performance 
measure into account.  These datapoints are very 
close to the datapoints of curve y1 representing the 
corresponding results of SVM3 and are thus 
difficult to distinguish in this plot.    
 
Errorbars in the experimental results (both, in 
Figures 2 and in Figure 3 below) are calculated as 
the standard deviation from 100 different datasets 
generated randomly.  The errorbars in Figure 2 are 

A B



in the order of the symbol sizes. The different 
coverage values are binned into a fixed number of 
bins, and the performance measures are averaged 
within each bin.  This average value of performance 
is assigned to the midpoint of any bin to represent a 

point on the CP curve.  Note that the performance 
value of the midpoint coverage is not necessarily 
equal to the calculated average. We call this 
difference the binning error.   
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Figure 3.  Difference curves  (A): Normally distributed data  (B): Uniformly distributed data 

 
 
 
 

5. DISCUSSION 
 

The results demonstrate that the performance of the 
classifiers does depend strongly on the ambiguous 
data.  When we evaluate the performance of the 
classifiers only with respect to the cleaned data 
(rising curves), which is appropriate if accuracy 
rather than completeness is important in an 
application, we find that separating ambiguous data 
can largely enhance the performance of the 
classification process. 
 
A further result is that the SVM classifier can 
achieve performances closer to the theoretical limit 
on cleaned datasets.  To better illustrate this point 
we show in Figure 3 the difference in performance 
between theoretical limits and the performance of 
the SVM classifier as a function of the coverage. 
This indicates that the relative performance becomes 
better by separating potential atypical points.  In 
particular, even removing only a small fraction of 
ambiguous data points can considerably enhance the 
classification ability of the SVM classifier.  
Practically, small coverage values are not of any 
interest and the results from low coverage points 

may be suspicious for not having sufficient data for 
training.  The kink (sharp raise close to coverage 
= 0.6) in Figure 3B is partially due to the 
binning error, because the uniformly distributed 
data have a sharp boundary around these values.  
This can also be seen in Figure 2B. 
 
A surprising result is that the performance of SVM3 
and SVM1 in classifying the cleaned data is very 
similar.  The difference between these two is almost 
undistinguishable.  This is rather counter-intuition 
because one would usually assume removing 
atypical points from the training set should result in 
training a better classifier for the typical points.  
This was not the case for SVM, and is in marked 
contrast to other classifiers, such as the neural 
network classifiers as reported in [6].  Note that this 
does not mean that separating atypical points does 
not matter because both SVM3 and SVM1 are tested 
on separated typical datapoints, A1.  This 
demonstrates a major advantage of SVM in that this 
type of classifiers is not easily disturbed by 
ambiguous data.  This may come from the fact that 
SVMs rely mainly on the dominant contributions of 
some specific datapoints that determine the support 
vectors and that the existence of some atypical 
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points in training a SVM may not degrade its 
performance on typical points.  As a result of this 
finding we can skip step 4 in the classification 
scheme when using SVM as classifiers and use the 
classifier trained in step 1 for the predictions in step 
6. This, however, may not be true for classifiers 
algorithms other than SVM. 
 
 

6. CONCLUSIONS AND OUTLOOK 
 

We discussed, in this paper, the classification of 
data with overlapping feature values, in which there 
are strong limits on the theoretical performance any 
classifier can achieve.  We found that the theoretical 
derived curves for the coverage versus performance 
(CP curves) are paralleled when SVMs are used.  
All the benefits of removing ambiguous data from 
the classification set is thus paralleled by using 
SVMs as classifiers, such as in situations where 
theoretical CP curves are not available and have to 
be discovered by some machine learning method. 
Previous studies have shown that bounded support 
vectors (BSVs) can be used to separate outliers.  
Our study demonstrated that BSVs could also be 
used to separate atypical points from the typical 
ones in the case of ambiguous data due to 
overlapping feature values.  
 
CP curves are very useful in practice as they can 
show if ambiguous data are a problem that might 
limit the performance of the classification process.  
In addition, these curves can be used to determine if 
the performance of the classification can be 
enhanced with reasonable relaxation of the 
coverage.  We found that it is not easy to cover 
efficiently intermediate values of the coverage by 
fine-tuning the regularization parameter C to get 
different numbers of BSVs.  Sometimes a small 
change in C leads to a large change in the number of 
BSVs.  This makes it difficult in practice to apply 
the SVM to derive CP curves.  We think that ν–
SVM might be more efficient to derive CP curves, 
and further studies should investigate this.  
 
We are currently exploring the performance of our 
scheme on real-world datasets, and are comparing 
the utilization of SVM with other classifiers in the 
more general separation scheme outlined in section 
2.  Note also that the removed points can be used in 
further analysis such as investigating missing 
attributes or even a possible extra class not 

considered in the training set. More research in this 
direction is thus desirable. 
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