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Abstract— A heuristic is proposed to address free parameter
selection for Support Vector Machines, with the goals of
improving generalization performance and providing greater
insensitivity to training set selection. The many local extrema
in these optimization problems make gradient descent algo-
rithms impractical. The main point of the proposed heuristic
is the inclusion of a model complexity measure to improve
generalization performance. We also use simulated annealing to
improve parameter search efficiency compared to an exhaustive
grid search, and include an intensity-weighted centre of mass
of the most optimum points to reduce volatility. We examine
two standard classification problems for comparison, and apply
the heuristic to bioinformatics and retinal electrophysiology
classification.

I. INTRODUCTION

In this article, we address the improvement of gener-
alization performance for highly volatile data sets, such
as the classification of unprocessed continuous waveforms
generated from retinal electrophysiology which may contain
a large proportion of additive noise, or the qualitative analysis
of gene and protein sequences based on manual appraisal
by bioinformatics experts. We focus on optimal selection
of the free parameters in classification using Support Vector
Machines (SVM). Specifically, we target optimization of the
cost parameter C, which controls the tradeoff between maxi-
mization of the margin width and minimizing the number of
misclassified samples in the training set [22], and the width
γ of the Radial Basis Function (RBF) kernel. Further, we
improve generalization performance of the selected model by
considering the number of support vectors employed in the
model representation, in addition to the prediction accuracy
or mean squared error of the model over a test data set.

A. Support Vector Machines

Suppose we are given a set of � observations

(x1, y1), . . . , (x�, y�)

with inputs xi ∈ X = R
d, i = 1, . . . , � that indicate targets

yi ∈ Y . In the general problem of supervised learning, our
goal is to find a function f(x) in the set of functions F which
minimizes a loss functional on future observations [4]. For
example, we may wish to find a function that minimizes the
classification error where Y = {−1,+1}, or minimizes the
mean squared regression error where Y = R.

Support Vector Machines [1], [2], [19], [22] map the
observations from input space into a higher dimensional
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feature space using a non-linear transformation, then find
a hyperplane in this feature space which optimally separates
the known observations by minimizing empirical risk.

In SVM classification, predictions on future observations
are then made from [2], [22]

f(x) = sign

(
�∑

i=1

yiαiK(xi,x) − b

)

where b is a numeric offset threshold and αi ≥ 0, called
the Kühn-Tucker coefficients [1], define the weight of each
observation. Those observations where αi differs from zero
are said to be representative support vectors [22]. The kernel
function K(x,x′) defines a dot product to transform the
observations from input space into feature space. This kernel
is chosen a priori based on the problem at hand: here we
will use the popular RBF kernel

K(x,x′) = e−γ ‖x−x′‖2

where the free parameter γ > 0, or width parameter [22],
controls the width of the Gaussian kernel.

If the classes are separable, the SVM finds the widest
possible margin that separates them [1]. However, if the
classes have some overlap in their distributions, we may wish
to allow some observations to be misidentified in order to
find a soft-margin hyperplane [22] that optimally separates
the remaining samples. This is accomplished by introducing
slack variables to the constraints of the Lagrangian opti-
mization problem that forms the SVM training algorithm,
effectively imposing an upper bound on the weights of the
support vectors such that 0 < αsv ≤ C, where the free
parameter C > 0 is a cost parameter that imposes a penalty
on misclassified samples [2].

B. Related Work

Appropriate selection of the free parameters for an SVM
is critical for obtaining good performance. Initially, Vapnik
[22] recommended direct setting of the kernel parameters and
cost function by experts, based on a priori knowledge of the
particular data set to be evaluated.

Grid searches over an arbitrary range of parameter values
is a common technique when such knowledge is unavailable
[17], [20], however such searches may be computationally
expensive and the precision of the results is subject to the
chosen granularity of the grid. In [4], [8], gradient descent
methods are proposed based on the minimizing the gener-
alization error, allowing a larger number of parameters to
be considered. However, in practical problems such methods
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Fig. 1. Comparison of the positions of evaluated points in a uniform random
search pattern (left) and a stochastic algorithm based on simulated annealing
(right). Note that although both searches contain exactly 660 evaluations,
the simulated annealing approach focuses on the area of interest to a much
greater extent. These figures were created from the Bioinformatics data set
(Inadequate vs. other) examined later in this paper.

may be affected by the presence of local extrema [12]. This
effect may be exacerbated in N -fold cross-validation from
random partitioning of the training data. Leave-one-out cross-
validation (where N = �) helps to reduce the effects of local
extrema through the complete evaluation of all permutations
of the training set at each point in the parameter search [14],
but this becomes computationally prohibitive when � is large.
In [14], a nearest-neighbor sampling pattern is progressively
evaluated as an alternative to gradient descent, but due to
the volatile nature of the evaluated surface, the average
of multiple locally-optimal models is used, increasing the
computational burden.

In [5], an analytical approach is proposed based on rescal-
ing the inputs xi in relation to the span of the support
vectors. For ε-insensitive Support Vector Regression (ε-SVR)
in particular, in [6], [17] analytical approaches to selection
of the cost parameter C are proposed based on the mean
and standard deviation of the target values yi. Analytical
selection of ε is proposed in [22] based on the noise level
of the inputs xi, and in [6] also considering the number of
training samples �. In [19], a combination of analytical and
combinatorial parameter selection is proposed, such that the
choice of ε is tuned to a particular noise density but the
choice of C is chosen through a numerical approach such as
cross-validation.

The well-known parameter optimization method of simu-
lated annealing [13] has recently been proposed as a sto-
chastic method for traversing SVM free parameter space.
In Figure 1, a comparison between a purely random search
and such a guided, stochastic search is presented. The points
evaluated by the simulated annealing algorithm concentrate
on the area of interest to a much greater extent. Such
techniques have been applied to synthetic and noisy image
data for optimization of the cost and kernel parameters [12],
feature selection for audio classification with a linear SVM
[7] and colon cancer recognition using radial basis function
classifiers (RBFC) [23].

While SVM classifiers intrinsically account for a trade-
off between model complexity and classification accuracy
to enhance generalizability in the non-separable case [22],
the generalization performance is still highly dependent on

appropriate selection of the C and γ free parameters. Thus,
we propose here to take this into account extrinsic to the
SVM itself, when tuning these parameters to find the most
optimum solution.

II. VISUALIZING PERFORMANCE IN C , γ SPACE

If we examine the topology of a surface representing the
generalization performance of an SVM classifier, training
the classifier using parameters selected by varying the cost
parameter C and the width parameter γ of the RBF kernel
over a loge range of values, some interesting patterns begin
to develop. In Figures 2–4, in which light areas correspond to
parameter values which yield high accuracy and dark areas
those that yield poor accuracy, we see a surface fraught
with many sharp local extrema, narrow valleys and sharp
cliffs. While the effects of these sharp extrema may well
be magnified by the log operation, we must take them
into account since the loge space is the surface we wish
to traverse. Similar shapes appear for many data sets, for
example [11], [20].

The difficulties of traversing such a complex, volatile
surface are immediately apparent. Gradient ascent methods
[4], [8] may become stuck in local extrema, while hill-
climbing algorithms such as the geometric approach in [16]
may traverse the space inefficiently. In addition, if we choose
an optimum point in parameter space near the edge of a sharp
cliff or other local extrema, it is quite possible that small
variations in the sample data may cause the surface to subtly
shift, causing the classifier to “fall” from the cliff to an area
of lower accuracy.

When a high-resolution close-up of a small region of
the surface is viewed, smoothed over the mean of several
iterations at each point, the chaotic patterns seen at a high
level seem to be formed by the convergence of multiple,
smaller regions.

III. PROPOSED HEURISTIC

In this paper, we use a simulated annealing algorithm
[13] to traverse a surface based on the loge magnitude of
the C, γ free parameters. Here we adapt the continuous, N -
dimensional implementation of this algorithm shown in [16],
but employ a simple random move generator with a small
bias towards the origin P∅. We also implement occasional
restarts to the most optimum points found thus far, with low
probability, an alternative suggested in [16].

From this stochastic path through parameter space, adopt-
ing the notation of [9], we minimize the cost functional

E (f) = Es(f) + λ Ec(f)

=
1
2�

�∑
i=1

|yi − f(xi)| + λ
(nsv

�

)Γ

(1)

where the cost E (f) at the point Pi = {C, γ} in parameter
space is determined not only by the classification error
Es(F ) ∈ [0, 1] of an SVM classifier trained using the
parameters defined by that point, but also by a complexity
penalty Ec(f) ∈ (0, 1] defined by the number of support
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Fig. 2. Error surfaces resulting from SVM classification by varying the C and γ free parameters over a loge range of values. Dark areas correspond to
high error, whereas light areas correspond to high accuracy. Triangles (�) indicate the optimum point found through a grid search of loge space, considering
only the classification accuracy and disregarding model complexity. The upper right image shows the result of a typical grid search on the Wisconsin Breast
Cancer Database [15]. The remaining images show results from a high-resolution grid search on the three-class Bioinformatics data set examined later in
this paper [18]: Valid vs. other (upper left), Inadequate vs. other (lower left) and a close-up of Inadequate vs. other (lower right) showing the convergence
of multiple smaller regions. The optimum point is not shown on the close-up for clarity. Some additional examples of this visualization in loge space are
shown in Figures 3 and 4.

vectors nsv in the model representation of f(xi), expressed
as a ratio to the total number of observations �. The
regularization parameter λ allows control over the tradeoff
between classification accuracy and model generalizability.
In this paper, we give equal weight to both accuracy and
complexity by setting λ = 1 for each of the following
experiments. We also set the free parameter Γ = 1

2 to sharply
penalize solutions which obtain high accuracy through high
complexity.

Once the cooling schedule has elapsed, we select the
absolute best point found Popt. We examine the points
surrounding Popt to select those within a small loge radius
r0 and with a cost functional E ≤ (1 + ξ)Eopt where ξ > 0
is small, then, borrowing a standard method from the field of
image processing, we calculate an intensity-weighted centre
of mass of these points. This has the effect of reducing the
volatility of the resulting end-point arising from the random

nature of the generalization surface. The resulting point in
parameter space, Psugg , defines the suggested parameters to
be used for this particular problem.

Figure 3 (left) illustrates the importance of this centre-of-
mass operation. Although this can potentially reduce accu-
racy somewhat in comparison to the optimum point Popt, the
resulting point in parameter space is likely to be further from
any steep cliffs in the evaluated generalization surface. Since
we have a finite set of observations, the decision boundary of
the classifier will likely change as additional training samples
are evaluated. For example, if we have a large number of
observations, it may be prudent to use a small subset of the
training data to find optimum parameters, but employ the full
set of training data to train the final classifier. This volatility
may cause the generalization surface to shift slightly as
more samples are added to the training, such that a point
in parameter space selected without those samples, close to
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TABLE I

SAMPLE RESULTS USING STOCHASTIC HEURISTIC ON WISCONSIN

BREAST CANCER AND IRIS PLANT DATABASES [15]. FOR EACH TEST,

THE 10-FOLD CROSS-VALIDATION ACCURACY, THE NUMBER OF

SUPPORT VECTORS, AND THE NUMBER OF EVALUATED POINTS IN loge

PARAMETER SPACE ARE SHOWN.

Database Search Method Acc. nsv Evals.

WBCD Fast-Cooling Heuristic 96.5 36 660
Slow-Cooling Heuristic 96.0 34 6880
Grid Search: Best 97.4 129 7373
Grid Search: Suggested 97.1 77 7373

Iris database: Fast-Cooling Heuristic 100 3 660
Iris setosa Slow-Cooling Heuristic 100 3 6880
(linear) Grid Search: Best 100 12 7373

Grid Search: Suggested 100 12 7373
Iris Fast-Cooling Heuristic 95.3 13 660
Iris versicolour Slow-Cooling Heuristic 94.7 9 6880
(non-linear) Grid Search: Best 98.0 28 7373

Grid Search: Suggested 96.7 35 7373
Iris database: Fast-Cooling Heuristic 96.7 8 660
Iris virginica Slow-Cooling Heuristic 98.0 6 6880
(non-linear) Grid Search: Best 98.0 33 7373

Grid Search: Suggested 97.3 35 7373

an edge such as illustrated here, may “fall” from the edge to
a region of lower accuracy.

Details of the specific implementation of the heuristic used
in this paper are summarized in Appendix I.

IV. RESULTS

We have obtained reasonable results with this heuristic
by setting the arbitrary cooling schedule to start at T0 =
100 and cool to TC = 0.1, reducing the temperature every
m = 10 iterations by δ = 0.01 (for slow cooling) or by
δ = 0.1 (for fast cooling). The fast cooling schedule therefore
results in 660 evaluations, whereas the slow cooling schedule
results in 6880 evaluations. We chose these schedules such
that the number of evaluations would approximately match
those of coarse- and fine-grained grid searches over the same
parameter space, and did not tune these schedules for any
particular experiment as we desire an automatic method for
parameter selection.

In each of the following experiments, the origin bias was
set to α = 0.1 (one tenth the magnitude of the move selected
by random walk). The probability of accepting a test point
with a detrimental cost was set to pacc = 0.1, so long as the
cost is within β = 0.1 of the current point. At any point in
the search, the probability of abandoning the current path in
favour of a random selection amongst the best points found
so far was pres = 0.01. The intensity-weighted centre of
mass calculation after the completion of the cooling schedule
included those points within a loge radius of r0 = 1 from
the best point found Popt, and which have a cost functional
E ≤ (1 + ξ)Eopt where ξ = 0.02. No fine-tuning of these
parameters was performed for any particular experiment,
since we wish to evaluate generalization performance when
the heuristic is employed blindly.

Empirically, we have found that the noisy nature of N -
fold cross-validation has made little appreciable difference

TABLE II

CONSISTENCY OF RESULTS FOR IRIS DATABASE, Iris setosa CLASS

(LINEARLY SEPARABLE). THE RESULTS SHOWN FOR THE FAST- AND

SLOW-COOLING HEURISTICS ARE THE MEAN OVER TEN RUNS.

Search Method loge(γ) loge(C) Accuracy nsv

Fast-Cooling Heuristic −1.83 2.80 100 3
(Standard Deviation) (0.05) (0.14) (0) (0)
Slow-Cooling Heuristic −1.81 2.76 100 3
(Standard Deviation) (0.02) (0.02) (0) (0)
Grid Search: Best 0.00 0.00 100 12
Grid Search: Suggested −0.15 0.06 100 12

TABLE III

CONSISTENCY OF RESULTS FOR IRIS DATABASE, Iris virginica CLASS

(NON-SEPARABLE). THE RESULTS SHOWN FOR THE FAST- AND

SLOW-COOLING HEURISTICS ARE THE MEAN OVER TEN RUNS.

Search Method loge(γ) loge(C) Accuracy nsv

Fast-Cooling Heuristic −6.8 15.6 95.8 8.3
(Standard Deviation) (2.02) (3.62) (0.89) (0.5)
Slow-Cooling Heuristic −8.5 18.4 96.4 7.7
(Standard Deviation) (0.66) (0.56) (1.05) (1.2)
Grid Search: Best −1.0 0.8 98.0 33
Grid Search: Suggested −1.9 1.3 97.3 35

in the results when using the stochastic approach, since
points near the end of the search may be quite nearby as
the temperature T decreases. However, one often-overlooked
step which can have a significant effect when using SVM
is to ensure the independently and identically distributed
(i.i.d.) inputs necessary for optimal classification [2], [22].
For example, one can centre and scale the inputs such that
all dimensions have zero mean and values xi ∈ [−1,+1].
However, when faced with noisy, volatile input data such as
the sensor waveforms examined in Section IV-D, there may
be peaks in future observations that were not seen in the
training data, thereby breaking these arbitrary bounds on the
input vector. A common alternative is to centre and scale to
zero mean and unit variance, but in our tests we found this
reduced the accuracy somewhat.

The following experiments were conducted in MATLAB
(Mathworks) using LIBSVM [3] version 2.81.

A. Classic Classification Problems

We first apply this heuristic to two standard classification
problems, in order to compare the results of the stochastic
heuristic above including the model complexity measure,
with a reasonably-sized grid search based only on cross-
validation classification accuracy.

The Wisconsin Breast Cancer Database (WBCD) [15] is a
binary classification problem with non-separable data, con-
taining 699 instances and nine discrete attributes. Instances
with missing data were removed, leaving 683 observations.
We left the classes unbalanced, with the natural class distri-
bution, but centered and scaled all numeric attributes based
on the mean and maximum magnitude of each attribute, such
that xi ∈ [−1,+1] in order to approximate i.i.d. data.
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Fig. 3. Visualizing the generalization performance of a grid search through loge space for the Iris versicolour class of the Iris Plant Database [15]. Circles
(◦) indicate the group of best points found. The triangle (�) shows the optimum point calculated from this group, using an intensity-weighted centre-of-mass
operation. On the left, the generalization performance is plotted as in Fig. 2 and 4, however on the right, a complexity penalty is added from Equation 1.
The resulting surface is smoother, indicating that the number of support vectors in the complexity penalty is less volatile than the cross-validation accuracy.
On the left, we see an example of how the centre-of-mass operation moves the optimum point further away from a region of lower accuracy, improving
generalization performance.

The Iris Plant Database [15] includes 50 instances for
each of three classes, for a total of 150 observations, with
four continuous-valued numeric attributes. The Iris setosa
class is known to be linearly separable from the others, Iris
versicolour and Iris virginica [15]. In our tests, we again
left the classes unbalanced with the natural distribution, and
centered and scaled all attributes as above.

Sample results from these tests are summarized in Table I
and compared to a reasonably-sized grid search as shown in
Figures 2 (upper right), 3 (right) and 4. We find that the
heuristic results in a model with comparable accuracy, often
obtained with fewer calculations. Due to our inclusion of
the number of support vectors nsv when evaluating the cost
functional at each point, the resulting models all have lower
complexity than that obtained through a grid search using
cross-validation accuracy as the only measure. For example,
the slow-cooling heuristic for the Iris virginica classifier
achieved 98.0% 10-fold cross-validation accuracy with six
support vectors, whereas the best point from a grid search
yields the same accuracy with 33 support vectors.

Some sacrifice of accuracy may be necessary as a tradeoff
to favour low complexity: for example, the WBCD classi-
fier with the slow-cooling heuristic obtained 96.0% 10-fold
cross-validation accuracy, whereas the grid search obtained
97.4%. On closer examination, however, we see that this
slightly higher accuracy was obtained at the expense of
high complexity: the grid search results required 129 support
vectors, whereas the slow-cooling heuristic required only 34,
representing a significant reduction in model complexity.

B. Consistency of Results

Since the heuristic takes a random path through parameter
space, we may wish to determine how consistent the results
are when run several times on the same data set.

For this purpose, we use the Iris setosa and Iris virginica
classes from the Iris data set, which are linearly separable and
non-separable respectively. The results from these tests are
shown in Figure 4 and summarized in Tables II, III. Notice
that both the slow- and fast-cooling heuristics obtain nearly
the same accuracy as the grid search, but with far fewer
support vectors, indicating that the resulting model is much
less complex. The results are reasonably consistent with the
slower cooling rate, but allow for higher variability with the
faster cooling rate.

Although the linear separability of the Iris setosa class
allows a wide range of values which will achieve 100%
accuracy with a very low number of support vectors, the
suggested parameters for both the fast- and slow-cooling
heuristics overlap. For the non-separable problem, however,
the variability is relatively high for the fast-cooling heuristic.
The range of suggested parameter values for the slow-cooling
heuristic is much more narrow, indicating that for non-
separable data, a slower cooling schedule should be used.

C. Bioinformatics

The Bioinformatics data set [18] includes three measures
(gap ratio g, normalized site log likelihood ratio h and consis-
tency index CI) used to determine the quality of alignment of
17 821 gene and protein sequences in preparation for phylo-
genetic analysis (12 625 of these were available to us for this
experiment). A fourth measure, the site rate, was available
in our test set but was not used in our experiments, so
that we could compare our results with [18]. The alignment
quality of each sequence was categorized by experts into
three classes: Valid, Inadequate and Ambiguous. The authors
of [18] compared the classification performance of SVM with
a C4.5 decision tree algorithm (C4.5) and a Naı̈ve Bayesian
classifier (NB), and found inferior performance for SVM.
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Fig. 4. Consistency of results from ten sample runs for the Iris database, comparing the results from the slow- and fast-cooling heuristic with a grid
search: the linearly-separable Iris setosa class (left) and the non-separable Iris virginica class (right). The grid search evaluated 7373 points in parameter
space, whereas the fast-cooling heuristic evaluated 660 and the slow-cooling heuristic evaluated 6880. The grid search considered only cross-validation
accuracy, whereas the heuristics considered both cross-validation accuracy and model complexity. Solid triangles (�) indicate the suggested optimum point
resulting from the grid search: the accuracy-weighted centre of mass of the point with best overall cross-validation accuracy that is closest to the origin P∅ .
Squares (�) indicate suggested positions from the slow-cooling heuristic, while crosses (×) indicate suggested positions from the fast-cooling heuristic. In
the highly separable case (left), both the fast- and slow-cooling heuristics find the same optimum points, to the lower right of the grid search which does
not consider model complexity. However, in the non-separable case, the heuristics have more difficulty converging to a point, as can be seen by the higher
spread in the distribution of optimum points found. A slower cooling schedule might correct for this, as the points found by the slow-cooling schedule are
much more closely spaced than those of the fast-cooling schedule.

However, they mentioned that their SVM implementation did
not attempt to identify optimal parameters.

In our experiments with this data set, we used (1 − 1
CI )

rather than CI in order to more closely match the distribution
of the other dimensions, which are heavily zero-weighted.
Since all values in the set are positive, all three dimensions
were then scaled such that xi ∈ [0, 1], but were not centred
on their means. Three binary SVM classifiers were trained
independently on randomly-selected but class-balanced sub-
sets of 100 sequences — 50 of the class to be selected and 50
of any other class with the natural class distribution — using
the above heuristic to determine optimal γ and C parameters
for each classifier.

The results of these tests are summarized in Table IV.
We found the cross-validation accuracy of the Inadequate vs.
other classifier to be comparable with that reported in [18].
However, with proper parameter selection through either grid
search or through our heuristic, we found that the results for
the Valid class were favourable to the results for both the
SVM with default parameters and the probabilistic classifiers
reported in [18].

Due to the high accuracy of the Inadequate vs. other
and Valid vs. other classifiers, we decided to train a fourth
classifier to distinguish Inadequate vs. Valid, ignoring the
Ambiguous class during training. The results from these
tests are also shown in Table IV. The classifier was trained
with 100 randomly-selected (but class-balanced) points, as
with the other classifiers. This resulted in high accuracy
and consistency over ten runs of the fast-cooling heuristic
with a different, randomly-selected set of training samples
for each run. The fast-cooling heuristic was then trained on

1000 similarly-selected points, and achieved a 10-fold cross-
validation accuracy of 99.5% with only 10 support vectors.
Further investigation may discover whether using this classi-
fier to predict the validity of the ambiguous alignments may
outperform manual assignment.

D. Retinal Electrophysiology

Waveform classification is a challenging problem as the
number of dimensions may be much larger than the number
of available observations (� � d): with such a large number
of dimensions, it is statistically more likely that one or
more of those dimensions may be fully-separable simply by
chance, and therefore any classifier may base predictions on
only that dimension during training. This is known as the
“the curse of dimensionality,” and is a significant advantage
for SVM [19]. To reduce the effects of this problem, proper
cross-validation is critical for generalization performance:
in this classification experiment, due to the relatively low
number of samples, leave-one-out cross-validation was used
instead of N -fold cross-validation, resulting in a smoother
error surface.

The retinal electrophysiology data set used in this paper
comes from pattern electroretinography (PERG). Axotomy
procedures were performed on female domestic pigs (Sus
domesticus), each approximately six months of age, as
part of an ongoing medical research project examining the
electrophysiological contributions of bipolar and ganglion
cells of the retina. A control PERG measurement under
ketamine anaesthesia was first taken from each subject for
comparison. The axotomy procedure then severed the optic
nerve. The time between the axotomy procedure and PERG
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TABLE IV

10-FOLD CROSS-VALIDATION ACCURACY RESULTS FROM A GRID

SEARCH AND FROM THE STOCHASTIC HEURISTIC FOR THE

BIOINFORMATICS DATA SET WITH BALANCED TRAINING SAMPLES,

COMPARED TO THE RESULTS OBTAINED IN [18]. NaN INDICATES ALL

VALUES WERE CLASSIFIED AS OTHER. RESULTS FOR VALID VS.

INADEQUATE (100 SAMPLES) ARE THE MEAN OVER TEN RUNS.

Class Search Method Acc.

Valid vs. other Heuristic 91.0
Grid Search 95.0
SVM in [18] NaN
C4.5 in [18] 87.2
NB in [18] 55.4

Inadequate vs. other Heuristic 98.0
Grid Search 98.0
SVM in [18] 97.0
C4.5 in [18] 93.8
NB in [18] 96.6

Valid vs. Inadequate: Heuristic Mean 99.1
100 samples (Standard Deviation) (0.9)
Valid vs. Inadequate: Sample run 99.5
1000 samples

TABLE V

SAMPLE RESULTS FROM RETINAL ELECTROPHYSIOLOGY

CLASSIFICATION, COMPARING A GRID SEARCH TO THE SLOW-COOLING

HEURISTIC. THE MEAN OVER 28 COMBINATIONS OF 12 BALANCED

SUBSETS OF 14 SUBJECTS ARE SHOWN.

Search Method Acc. nsv Evals.

Fast-Cooling Heuristic 98.5 6.2 660
Slow-Cooling Heuristic 98.5 6.2 6880
Grid Search 99.4 8.5 6603

measurements was approximately six weeks, in order to
allow phagocytosis processes to completely consume any
remaining ganglion cells in the retina. Gain settings were
held constant across all measurements. Data from 103 high-
contrast chequer locations displayed on a 75 Hz source
were averaged using an m-sequence over approximately 2.5
minutes. This procedure results in a 103×145 = 14 935 point
vector for each observation. A mean of all chequer locations
was generated to form a 145 point waveform, corresponding
to 145 ms at a 1000 Hz sampling rate. A discussion of similar
methods may be found in [21].

The preliminary data used in this paper has 14 observa-
tions in two classes: six axotomy and eight control. The
mean waveforms for each class are shown in Figure 5.
To perform the classification, the raw waveform was input
as a 145-dimensional vector. Each dimension was centred
and scaled independently by the mean and magnitude, such
that the resulting inputs had a mean of zero and values
xi ∈ [−1,+1]. To more closely approximate a balanced
data set, the classifications were performed on each of the
possible

(
8
6

)
= 28 combinations of 12 balanced subsets, and

the resulting accuracy was taken as the mean across all 28
runs.

The results of the classification are shown in Table V.
We have found excellent generalization performance using
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Fig. 5. Mean pattern ERG waveforms for six axotomy and eight control
subjects. The mean waveforms appear to be visually separable, but even
to an expert, the actual observed waveforms may be somewhat ambiguous
upon visual examination.

the heuristic with this data set: the fast-cooling heuristic
found the same accuracy and complexity as the slow-cooling
heuristic but with far fewer evaluations.

V. CONCLUSIONS

Support vector machines are robust, but naı̈ve choices
of the free parameters will often result in unacceptable
generalization error. Appropriate selection of free parameters
is essential to achieving high performance.

In this paper, we have kept the simulated annealing scheme
quite simple, with a choice of two cooling schedules: fast
cooling (δ = 0.1) and slow cooling (δ = 0.01). The
slow cooling schedule allows a more extensive search of
the parameter space and may be useful for finding global,
narrow extrema, whereas the fast cooling schedule may be
used to find a good solution quickly. Using the proposed
stochastic heuristic to navigate the error surface from two
classical classification problems and two real classification
problems, with selection based on the inclusion of a model
complexity measure and an intensity-weighted centre of
mass, we have found results comparable with those of a
grid-search but with lower model complexity. The technique
can easily be extended to take further free parameters into
account, for example to discover an optimal solution in a
three-dimensional parameter space defined by C, γ and the
width of the ε-tube used in the soft-margin loss function for
regression or function estimation problems [19], [22].

We find that when tuning free parameters, including a
model complexity penalty enhances the generalizability of
the final solution. Blind application of this simple annealing
scheme was found to give good results with several classic
and real data sets. Further analysis is warranted to determine
the generality of this approach with a wider array of practical
problems, and to compare the results of this heuristic with
other parameter optimization methods, such as [4], [14], [20].
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APPENDIX I

The details of the simulated annealing heuristic used in
this paper are as follows. A MATLAB (Mathworks) imple-
mentation may be downloaded from the authors’ web site
(http://www.cs.dal.ca/˜tt).

1. Initialize a high temperature T ← T0, and set the
starting point Pi ← P0 within the loge parameter space.

2. Determine a new test point Pt, taken in a random
direction from Pi (with uniform distribution), and a random
scalar distance (with normal distribution) multiplied by the
ratio T/T0 and the width (or height) of the parameter space.

3. Add a small origin bias Pt ← α(Pi −P∅) where P∅

defines the loge origin and α is a small scalar. Check that
the current point Pt lies within the boundary conditions of
the parameter space: if not, select a new point at random
anywhere within the parameter space.

4. Determine a scalar cost functional Et for the current
position Pt, including the classification error and model
complexity of an SVM model trained using the parameters
at this point. If the cost functional Et for Pt is less than that
of Ei of Pi (or if this is the first evaluated point), accept
this point as the new position in the parameter space. If not,
but the resulting ascent in cost is small, perhaps accept this
point with a small probability pacc. Otherwise, reject it.

5. If the point was accepted, set Pi ← Pt and Ei ← Et,
then compare the cost functional Ei with Eopt of the most
optimum points obtained thus far: if the cost is lower,
replace the existing list with the current point; if the cost
is approximately equivalent within a small margin of error,
add the current point to the existing list.

6. If the cost Ei > (1 + β)Eopt, where β is a small scalar,
then with a very small reset probability pres � pacc, jump
to a randomly selected point from the list of optimum points.

7. Drop the temperature T ← T (1−δ) every m iterations.
If the temperature is still higher than the termination criteria
TC , continue through further iterations from step 2. Other-
wise, determine a single optimum point Popt as the point in
the set of optimum points that lies closest to the origin P∅.

8. Gather a set of points from the list of all evaluated
points which have a cost within E ≤ (1 + ξ)Eopt of the best
cost Eopt, where ξ is a small scalar, and which lie within a
small radius r0 from the optimum point Popt.

9. Determine the suggested point Psugg as the intensity-
weighted centre of mass of this set of points, using (1− Ei)
as the intensity for each point i, and retrain the model with
the parameters determined by this suggested point using all
training points.
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