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Abstract— In this research we propose learning a con-
troller for a mobile robot with a topographic Restricted
Boltzmann machine (tRBM). The topographic RBM gener-
alizes the previously proposed Map-Initialized Perceptron
(MIP) to a probabilistic model which learns a joint distri-
bution of sensory states and continuous actions.
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1 Introduction
In previous work we proposed the Map Initialized Per-

ceptron (MIP) [1-2], in which a Self-Organizing Map
(SOM) learns a topographic representation of sensory state
in an unsupervised manner that are used by a subsequent
perceptron which learns appropriate actions to take from a
supervisory signal. In our previous work we argued that
the use of a SOM to learn an ordered representation has the
advantage of being more easily interpretable, aid learning
and relearning after injuries, and more closely resembles
biological systems. MIP was shown to effectively learn
obstacle avoidance on a small mobile robot, e-puck [3].

In this work, we propose a sparse, topographic variation
of the restricted Boltzmann machine (tRBM) which gen-
eralizes MIP to a probabilistic model where states and ac-
tions are modelled jointly. As in [2] we utilize the task
of random walking with obstacle avoidance on the e-puck
robot to evaluate the model. The topographic representa-
tion learned by the tRBM is equally transparent as MIP,
allowing us to analyze the functionality acquired during
learning. By learning states and actions simultaneously,
the tRBM can perform all learning online. Furthermore,
the inherently probabilistic nature of the RBM leads it to
naturally explore the action space, with unexpected inputs
causing more exploratory behavior.

2 RBM as Robot Controller
The Restricted Boltzmann Machine is a stochastic, gen-

erative model with symmetric connections between a vis-
ible and hidden layer, and no connections within a layer.
The model is defined by the energy function

E(v,h) = −b · v − c · h − v ·W · h

where b and c are the visible and hidden biases, respec-
tively, W are the weights, and v and h are the (binary) visi-
ble and hidden states. The probability of a visible and hid-
den node being on are given by

p(vi = 1|h) = σ(h ·wT
i + bi)

p(hj = 1|v) = σ(v ·wj + cj)

where σ(x) = 1/(1 + e−x) is the sigmoid function.
For real-valued data Gaussian visible units are used, in

which case (assuming the data is scaled to unit variance for
simplicity)

E(v,h) =
�

1
2 (v − b)2 − c · h− v ·W · h

E[vi|h] = h ·wT
i + bi

The goal of learning is to lower the energy of the data
while increasing the energy of everything else, as repre-
sented by the equilibrium distribution of the network. The
Contrastive Divergence algorithm (CD) [5] efficiently ap-
proximates the model distribution with k-step reconstruc-
tions and works well in practice:

∆wij ∝ vihj − vri h
r
i

where vr and hr are the RBM’s reconstructions computed
by sampling the visibles given the hiddens and vice versa
one or more times.

2.1 The Topographic RBM
In order to learn a topographic representation in an

RBM, we propose minimizing the difference between the
distribution p(hj,k|v) and

p(ȟj |v) = ΣkNj,σ(k)p(hk|v)

where Nj,σ is a Gaussian centered on hidden node j with
variance σ2. p(ȟ|v) can be computed efficiently by con-
volving p(h|v) with a small Gaussian filter. For binary
hidden units the natural measure of the difference in distri-
butions is the cross entropy, for which the derivative with
respect to the weights is simply (ȟj − hj) · v. Combining
this with the CD update yields

∆wij ∝ vihj − vri h
r
j) + (ȟj − hj)vi = viȟj − vri h

r
j

2.2 Sparsity Regulation
While SOMs offer a very local representation due to its

winning node learning mechanism, a standard RBM learns
a very distributed representation. Much previous work has
shown the advantage of sparse representations, which lie
between these two, in a variety of tasks, as well as their
resemblance to neuronal representations [6].

A target sparsity level, ρ, can be enforced on individ-
ual nodes by maintaining an estimate of their expected ac-
tivation, qj(t) = (1 − λ)qj(t − 1) + λhj(t), and again
minimizing the cross entropy between the distributions
p(hj = 1) ≈ q and p(hj = 1) = ρ [5]. In this case,
∆wij ∝ vi(ht

j +ρ−qj)−vri h
r
j . This has the added advan-

tage of preventing dead nodes, forcing the network to find
a representation which utilizes all hidden nodes.

We propose an alternative mechanism in which global
hidden activity triggers lateral inhibition when it exceeds
the sparsity target. In this case, p(hs) = p(h)+min(0, ρ−
µp(h)). While this would be vulnerable to the dead node
problem in a standard RBM, the neighbor excitation in the
topographic RBM ensures that activity, and thus learning,
is spread through the network. Both methods were effective
in regulating activation sparsity and resulted in equivalent
performance on the experimental task. However, the global
mechanism more closely resembles neuronal systems and
does not require any memory of activity levels.



2.3 Jointly modelling states and actions
Rather than modelling state with a SOM or other net-

work and then modelling actions on top of this as in MIP,
we can jointly model sensory states and actions with the
RBM. When actions are supplied by a supervisor, which in
this case is a hard-coded algorithm but could just as easily
be a human, the RBM performs imitation learning. When
the supervisory signal is missing we need to compute the
expected action given the sensory state rather than hidden
state. To do this, Gibbs sampling is used, where the action
nodes are initialized at an arbitrary value (e.g. 0) and then
hidden states are samples and action states reconstructed
one or more times

p(hn
j = 1|s,an) = σ(s ·wj + an · uj + cj)

an+1
k = hn · uk + bak

where w and u connect the sensory inputs and actions, re-
spectively, to the hidden layer, and ba are the action biases.

2.4 Regulating exploration with Temperature
We can paramaterize the exploration-exploitation ten-

dency of the robot by introducing a variable temperature,
T, to the system so that

p(hn
j = 1|s,an) = σ

�
T−1(s ·wj + an · uj + cj)

�

When the temperature is high, the input to the hidden
layer is scaled down resulting in greater stochasticity in the
hidden layer activity, and thus more exploratory behavior.
By scaling the temperature down over learning, known as
simulated annealing, we can gradually exploit the acquired
knowledge more and more.

3 Experiments
In the experiment, the network observes the proximity

sensor readings and the actions selected by the hand-coded
obstacle avoidance algorithm. As seen in figure 1, the
network learns distinct topographic representations for the
states corresponding to the behaviors going forward, back-
ward, soft left, hard left, soft right, and hard right. We also
see that more hidden activity is devoted to the situations
which deviate more from the default state of sensing no
obstacles and going forward. This default state can be en-
tirely modelled with the visible biases, and thus causes no
hidden activity.

As depicted by the error plot in figure 3, the topographic
RBM successfully learns the mapping from proximity sen-
sor state to obstacle avoiding actions. The early spike in er-
ror occurs when sparsity regulation is enabled, however the
network quickly recovers. Sparsity regulation is delayed in
order to allow the network to form a tightly interwoven to-
pography.

4 Conclusion and future work
We have shown an RBM model which learns sparse, to-

pographic representations that successfully model the joint
distribution of sensory and action states in a mobile robot
executing an obstacle avoidance behavior. The topographic
structure makes the knowledge acquired by the network
interpretable and relatable to biological systems while the
probabilistic nature of the model addresses the exploration-
exploitation tradeoff.

RBMs offer a number of features which enable exten-
sions to the present work. By stacking RBMs in a Deep Be-
lief Network (DBN), hierarchical representations of high-
dimensional inputs such as visual imagery can be mod-
elled and compressed before being fed into a top-level

RBM jointly modelling states and actions. Furthermore,
the paradigm of free energy based reinforcement learning
can be integrated to allow the supervisory signal to be re-
placed with a reward signal from the environment.

Figure 1: Mean (far left) and random sample hidden
activation when going forward (row 1), backward (2),
soft left (3), hard left (4), soft right (5), hard right (6).
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Figure 2: Error in real-valued action selection for
obstacle avoidance task.
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