
6 DeepLearning

Our treatment of neural networks has been basically the state of the art for at least 20
or 30 years, though this area is now receiving considerable attention under the name of
deep learning. Quite simply, deep learning refers to neural networks with many layers,
which will of course lead to more complex models and hence it is likely that they
can outperform simpler models for complex tasks. While this was already clear in the
1990s, we have only been able to train such networks in more complex tasks in the
last few years. This advancement is due to several factors, but specifically though the
availability of large supervised datasets, the enormous increase of computational power
in particular though GPUs, and some more sophisticated applications of regularization
techniques. We will briefly outline some of these issues here while basically following
some of the tutorials in Tensorflow.

6.1 Convolution

Most of the success in deep neural networks have been demonstrated with image
processing and involve convolutional neural networks, and this this section we will
just review basic convolutions. A convolution in one dimension is defined as

f ⇤ g =

Z 1

�1
g(t0)f(t� t0)dt0 (6.1)

6.2 CNN

The idea of using convolutions in neural network have been first used by Fukushima
in 1980. Fukushima worked at this time for NHK (the Japanese public broadcaster)
together with physiologists as NHK was interested to understand the mechanisms of
human vision. It was well known since the early 1960s form the experiments by Hubel
and Wiesel that some neurons in the primary visual cortex (the first stage of visual
processing in the cortex) are edge detectors.

Edge detectors are also the workhorse of computer vision, and we discussed in the
first section how such filters are implemented with convolutions. The neural networks
that we discussed before had to learn individual weights to each pixel location. Even
if this network would learn to represent an edge detector, such detectors have to be
learned for each location in an image since edges could usually appear in all locations.
So another way of thinking about convolution is that a neuron (specific filter) is
applied to every possible location in the image. This leads us to a convolutional
neural network (CNN).

DeepLearning56 |

Fig. 6.1 A famous implementation (so called AlexNet) of a convolutional neural network for image
classification Representation (Krizhevsky, Sutskever, Hinton, 2012).

A famous example called AlexNet is shown that was used to classify a big database
of images from many different classes is shown in Fig. 6.1. This network takes three
dimensional images (e.g. RGB values of pixels) and applies a layer of filters onto
it. There are actually several layers of filters (so called filter banks) applied to the
input image. The network consists actually os several layers of such convolutional
computations. Also, to help with the computational coast of the operations we are
sometimes not just shifting the filter by one pixel but might shift it by s pixels. This is
called a stride.

If we would only apply convolutions on convolutions, then we would end with
filtered images of filtered images. However, what we really hope to achieve are high
level representation such as nodes that represent class labels. Such labels are likely
not to depend on individual pixels and rather represent a highly compressed summary
of an image. To help with this we add pooling layers after each convolution layer. A
pooling operation is usually just taking the average or the maximum of the responses
in a certain area of the filtered image, thus compressing the images down by only
considering the average or maximal feature represented by the filter in this area. At
the end we use a regular network, now often called a fully connected layer, to gather
all the information and make the final classification based on the features extracted by
the network.

While we have just outlined the operation of this network, an important part of
using this network is of course the training. Indeed, for our further discussion it is
good to realize that the filters are not chosen by hand but are learned from examples.
This training was trained with the back propagation algorithm. This is fairly straight
forward except when back propagating though the pooling layers. One approach is
thereby to give all credit for the error (average pooling), or juts change the winning
unit (max pooling).

6.3 Tensorflow
To implement deep networks we use the Google’s Tensorflow package. Please make
sure it is implemented. Please follow the first tutorials

| 57Representational learning and compression

https://www.tensorflow.org/versions/r0.11/tutorials/mnist

followed by
/beginners/index.html#mnist-for-ml-beginners

for the beginner tutorial, and by
/pros/index.html#deep-mnist-for-experts for the expert one.

6.4 Representational learning and compression
Above we pointed out that we used back-propagation (gradient descent learning) to
learn all the filters in the machines and hence the specific representations in each of the
layers of the deep network. This is a great advantage over more traditional system in
which filters had to be designed carefully by hand, which is not only time consuming,
but also might be less optimal than learned filters. This evolution in our field is outlined
in Fig. 6.2.

Fig. 6.2 Evolution of machine learning system (from Goodfellow, Bengio, Courville 2015).

To illustrate again the re-reprentation of a signal with filters, consider basic signal
analysis. We have time varying signal that is represented with floating point values
for each time step. Say we are sampling with 500HZ, typical for EEG, that is, we

DeepLearning58 |

have one data point every 0.002 second. If we assume that a floating point is typically
represented by computer word of 64bits, then a 10 minute length would take over 2MB
of storage.

An example signal,x(t) is illustrate in Fig. 6.3. While this is a relative complicated
signal, we have also created two template signals, which we could also call a basis
function, with which we can reconstruct the signal as

x(t) = a
1

y
1

(t) + a
2

y
2

(t) (6.2)

Representing the original signal with these basis functions has a big advantage. For
example, if we all know about the basis functions, than I could transmit the signal with
only two computer words for the coefficients a

1

= 2 and a
2

= 3 (arbitrarily chosen
numbers), which takes 16Bytes. Of course, we can not expect real signals to be made
up of only these two basis functions. So in practice we want to create a large list of
"appropriate" basis functions. The filters in deep neural networks represent such basis
functions, and the appropriateness should come from the fact that they are learned
from the examples.

Fig. 6.3 Illustration of signal representation with templates.

Now if we have a large list of basis functions, then we still might need to submit a
large number of coefficients. Indeed, if we make the basis function a value at each time
step, then we would just end up with the same representation as before. However, a
very important insight to make efficient use of resources while extracting the "essence
of signals" is to try and find sparse representations. A sparse representation is a
representation where I might have a large number of basis functions in my dictionary
(nodes in a deep network) but are only using a relatively small number of active nodes
to represent each example. In our example this might correspond to

x(t) = a
1

y
1

(t) + a
2

y
2

(t) + a
3

y
3

(t) + a
4

y
4

(t) + a
5

y
5

(t) + a
6

y
6

(t) + ... (6.3)

with a coefficient vector

| 59Denoising autoencoders

a = (2, 3, 0, 0, 0, 0, 0, ...). (6.4)

Sparse representations do lead to considerable compressions, and I believe that com-
pression like a = (2, 3), and particular sparse compression, is an essential ingredients
of machines to gain some "semantic knowledge" of the world. For example, there are
many instantiations of a tables, but my ability to characterize them with one word is
equivalent to semantic knowledge and a form of sparse representation if we take as
our communication dictionary a large list of names for furnitures.

6.5 Denoising autoencoders

If compressed (or sparse) representations are so useful, can we force such representa-
tions in our deep networks? There are different techniques that will indeed force some
compressed representations including the architecture outlined here as well as more
general regularization methods discussed in the next section.

A simple example of an autoencoder is shown in Fig. 6.4. In this network we start
with an input layer that is connected to a smaller hidden layer and then to an output
layer that is the same size as the input layer. The reason for choosing an output layer
that has the same size as the input layer is that we want to build a mapping function that
maps inputs to the same output. This is actually an example of unsupervised learning
as we do not require labels just raw data such as pictures.

Fig. 6.4 Examples of autoencoders with the basic idea on top, the deep autoecncoder that kicked
of deep learning by Hinton and Salakhutdinov 2006, and some comparisons of auto encoders to
PCA.

DeepLearning60 |

Why would we want to build such functions and isn’t this simply the identity
function? It is not as we channel the input through a small layer that forces some
compression. In this sense we try to extract useful filters, and some people have
described this as semantic hashing. Most of the implementation use a version were
the inputs are somewhat corrupted by noise and the labels are the noiseless pattern,
which are called denoisong autoencoders. This will also help to force the solution
away from the identity function and is an example of noise induction as a regularization
technique as discussed further below.

6.6 Regularization

We have discussed before the bias-variance tradeoff in modelling. That is, if the model
complexity is not sufficiently high to describe the degrees of freedom of the system
that we want to model, than we can not expect good results. Indeed, we expect some
form of bias or underfitting in our function fits. On the other hand, if the complexity of
out model is too high, the we expect overfitting or a large variance of the accuracy of
predictions. Deep learned represent a form of machine learning in which we build very
large models with the hope that they will to some extend include the target model or
at least a sufficient approximation. However, preventing these models form overfitting
has therefor been a major challenge and the techniques discussed here have been a
crucial part in making deep learning work.

For the most part we will loosely equate the number of parameters with the
complexity of the model. Of course, the specific architecture such as a hierarchical
versus flat representations is of course also part of the complexity equation, we think
here more about a given architecture and ask how we can sufficiently constrain the
parameters. One solution to the problem is to use lots of data compared to the number of
parameters that will constrain the parameters sufficiently. Indeed, large data collections
such as ImageNet have therefore been essential in demonstrating the abilities of deep
networks.

However, we are nearly always in the situation that we do not have enough training
data, and data augmentation is a common an essential technique even in the case of
the ImageNet competition. Images are actually a good example to see where certain
transformation are good candidates for good data augmentation. Shifting and image
should not alter the content, and rotation and some form of stretching does also not
alter essential features for classifying the content of the figure. Indeed, even changing
individual pixels in a high resolution image do not have a drastic impact on recognition
abilities. So generating more training images with these transformation from the labeled
training set is a good way to increase the training data set. Injecting noise either at
an input level or at an output level is another example of such data transformations
as mentioned above for denoting autoencoders. The data augmentation technique is
actually a good example where we use some expert knowledge augment the training
data set. But we should also stress a warning, such transformation are not necessarily
good in every situation. Indeed, to some extend we must already know the data
distribution to generate proper examples, but this is usually what we are trying to do
with machine learning. So data augmentation must clearly be seen as inducing some

| 61Regularization

expert knowledge to restrict the space of all possible data transformations to a subset
that are consistent with the world model.

Bagging (bootstrap aggregating) is a technique that uses the average of several
trained models to prevent overfitting. Such models are often discussed under the topic
of ensemble machines. A random forrest is a popular example of an ensemble method
with decision trees. Decision trees are prone to overfitting and combining them with
model averaging is therefor essential for good performance.

A common cause for overfitting in neural networks is that with a lot of neurone
relative to the training examples we could dedicate individual neurone (grandmother
cells) or a small number of them to the memory of individual training points. early
stopping of the training procedure was hence a common techniques in the 1990s. A
more recent technique is called dropout in which individual neurones will for some
random invocations not contribute to the output. Hence, this forces that other neurone
must be able to contribute to the explanation of a data point which should prevent
grandmother cells.

Finally, a more systematic way to approach regularization is though priors and
parameter constraints. In a Bayesian sense we are looking for a MAP estimate of the
parameters which equates to a likelihood with a prior,

p(w|x, y) = p(x, y|w)p(w) (6.5)

It is possible to show that for a Gaussian prior that is equivalent to minimizing a the
regular loss function with a quadratic constraint on the parameters

˜L(w,x, y) = L(w,x, y)� �||w||2, (6.6)

where L(w,x, y) is our regular loss function such as the cross entropy or MSE. We
included here a hyper-parameter � which allows us to vary how strongly we should
take this constraint into account. The gradient descent of this loss function is

�w = �↵dL(w,x, y)

dw

� 2�w. (6.7)

which we can also write in the form

w (1� 2↵�)w � ↵
dL(w,x, y)

dw

. (6.8)

This corresponds to an exponential decay of the weights when the gradient is zero. Or
in other words, this puts pressure on the weights to decay unless they are reinforced
by the gradient, and it is therefore often called weight decay. The specific case of
this quadratic penalty term (also called L2 norm) is also called ridge regression or
Tikhonov regularization.

Weight decay can be formulated in a more general way with other functions of the
weights that relate to a prior. For example, a common choice is the L1 norm,

˜L(w,x, y) = L(w,x, y)� �||w||, (6.9)

which is related to a technique called LASSO (least absolute shrinkage and selection
operator). This form of regularization is related to a prior is an isotropic Laplace
distribution and leads to a constant weight decay,

DeepLearning62 |

�w = �2�sign(w)� ↵
dL(w,x, y)

dw

. (6.10)

There is some argument that LASSO leads to a more sparse representation than ridge
regression, and we have argued that this regularization (with slight modifications) is
very good in situations where a few relevant features are embedded in a large and noise
feature vector with irrelevant features.

There are a many other techniques with the effect of guiding the search in a spe-
cific subspace of the parameter space. Unsupervised pre-training or semi-supervised
methods can be placed in this category, but even adversarial training or a good discus-
sion can be found in the recent MIT book Deep Learning by Ian Goodfellow, Yoshua
Bengio and Aaron Courville.

