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  Abstract  Previous multi-modular models of the 
hippocampus with point attractor networks have shown a 
robust ability to learn long sequences. Here we extend 
this framework to continuous attractor networks that have 
been implicated in place fields. We discuss their relation 
to recent physiological findings of sequence recall in 
rodents.  
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1  Introduction 
   Although there is some consensus that the 
hippocampus is involved in spatial memory and learning, 
the precise processes and mechanisms are still under 
debate. In recent years many studies have linked memory 
consolidation and retrieval to the hippocampus. Hippo- 
campal replay during sleep has been considered necessary 
for consolidation (strengthening of synaptic associations) 
of new memories in the cortex [1]. More recently, replay 
(synaptically driven reactivation of cells involved with 
the learned memory) has been observed during both the 
awake and resting states [2].  Robust and frequent replay 
in periods of awake rest as well as during reward-based 
tasks [3] suggests that consolidation is not limited to 
sleep.  Studies have found that awake replay, mostly 
associated with memory retrieval, can be stimulated by 
sensory input as a cue for the associated memory recall 
[4].  
   R
provide the stored information required to navigate or 
interpret their current and future spatial environments. 
Replay of a firing sequence in place neuron fields could 
be linked to storage of memories related to navigational 
tasks and implicated in retrieval of a navigation sequence 
prior to the traversal of a learned path [5]. In addition to 
replay of a learned pattern in the forward direction in the 
time leading up to a navigational task, there may be 
mechanisms for replay in the reverse direction after the 
traversal of a sequence of locations, involved in con- 
solidation [6]. 
   Lawrence et al. [7] proposed a network, similar to that 
of Jensen and Lisman [8], incorporating a hetero- 
associative connection between modules in contrast to an 
autoassociation. Each independent module remained 
implemented as a Hebbian trained point attractor neural 
network connected through recurrent autoassociations 
(Fig 1A). Their model learned long discrete sequences of 
random patterns rapidly and efficiently, in control and 
noisy conditions [7].  
   Here, we build on the model of Lawrence et al. to 
simulate the neural network activity of place cells in the 

hippocampus, testing whether a point attractor neural 
network can be transformed into a robust reliable 
continuous attractor neural network for computational 
modeling of sequence memory. We do this implementing 
a continuous Gaussian input pattern as in the Dynamic 
Neural Field model [9], thus transforming each module 
within the network from a point attractor to a continuous 
attractor. Thus, our proposed architecture is used to 
simulate the synaptic activity of the place cells as the 
cognitive map is formed (encompassing both learning and 
replay functions) when the subject follows a spatial path 
[10]. 
   We show that this architecture can rapidly learn and 
replay sequences of place fields effectively. Furthermore 
we show that associations can be made between patterns 
further apart than the immediately preceding and 
succeeding patterns; such distal associations may be 
essential for goal based spatial memory and behaviour. 
 
2  Results 
  Our simulation showed that the network can recall 
sequences of Gaussian patterns.  
  To test how well this network can learn sequences of 
different speeds we altered the relative distance between 
subsequent patterns. Thus for each successive iteration of 
the sequence, the maximally activated node is a further 
distance away. We refer to the distance of consecutive 
patterns as shift value. We tested the network using shift 
values of one to fifty nodes (after fifty nodes, the test 
would be repeating itself, as the Gaussian patterns 
composing the input are periodic). The rate of pattern 
replay, calculated as the distance between two maximally 
activated nodes during a set number of iterations, 
gradually increased as expected with increasing pattern 
shift, until a shift of approximately 25 nodes (Fig 1B). 
This showed substantial robustness, as the network was 
able to retain the sequence with up to one quarter of the 
pattern shifted per iteration. Replay rate increased linearly 
over these first 25 calculations and then dropped abruptly, 
indicating that the network was no longer holding the 
pattern and had broken down in terms of recall ability. 
To test the robustness of the network, we studied the 
ability of the network to recall a pattern when the initial 
input sequence was altered to represent noisy variation in 
firing amplitude. The network retained a high degree of 
recall to approximately 22 shifted patterns. The rate of 
pattern replay does not increase linearly with noisy input 
compared to the control condition (static peak heights). 
These results show the model can reliably replay noisy 
patterns with a small change in linearity of recall, 
showing network stability important for biological 



plausibility. The heteroassociative network remains 
operational with large pattern shifts, displaying accurate 
sequence recall when moving through a pattern at greater 
speed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
F igure 1: (A) Network Schematic  Hebbian trained 
continuous attractor networks (Module A and B) 
containing recurrent intramodule autoassociations (wAA, 
wBB), an intermodule autoassociation (wBA) and an 
intermodule heteroassociative link (wAB). (B) Results of 
the network recall ability test with increasing pattern shift 
comparing control and noisy conditions. Without noise 
the network retains the sequence up to 25 patterns per 
step whereas in the noisy conditions only 22 patterns per 
step were successfully retained. 
 
3  Discussion 
   A continuous attractor model can achieve in viable 
sequence learning. The benefits of the bi-modular 
attractor network [6], namely automatic transitions 
between patterns in a sequence in the absence of a 
designated time constant, are evident in our continuous 
attractor model, which can effectively learn and replay 
sequences of highly structured continuous patterns. 
   Our results were obtained with modules each 
containing one hundred nodes. The optimal number of 
nodes is a subject of contention in neural modeling, and it 
is possible that variations in node number may affect 
network learning and recall. Modules containing hidden 
layers of nodes or multiple auto- or hetero-associations 
may also be effective at storing and replaying ordered 
sequences of patterns. 
   An interesting aspect of our results was the lack of 
occurrence of replay in the reverse direction. Reverse 
replay has been observed in place node neural fields in 
biological experimentation [7], and it has been postulated 
that a singular network can replay a sequence in the 
forward direction preceding motor activity, as well as in 

the reverse direction (assumed to be for consolidation 
purposes) following traversal of a path [6]. Reverse 
replay has been implicated in associating reward or 
consequence following movement along a path [5]. 
Parameter-dependent alternation between forward and 
reverse replay in a manner consistent with known models 
of hippocampal network behavior has yet to be 
successfully implemented [5]. It has been shown that 
reverse replay does occur biologically in a context 
dependent manner, with little reverse replay observed in 
the sleep state relative to the waking, active state [8]. 
These findings suggest that a pattern once stored can be 
dynamically recalled in either the forward or reverse 
direction. We, however, were unable to detect reverse 
replay in this study. Our findings show that a bimodular 
continuous attractor network using a heteroassociation is 
an effective mechanism for sequence memory. Further 
research incorporating parameter dependent reverse 
replay, along with biological correlates, would support 
the hypothesis that such networks exist in the 
hippocampus.  
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