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ABSTRACT

We discuss recurrent networks with local excitatory and sur-
rounding inhibitory connectivity and their implications as
model for the dynamics of sensory awareness and saccade
initiation. A version of such a model with spiking neurons is
introduced, and its association with simulations of the supe-
rior colliculus are reviewed. We also discuss the competition
for attention as suggested by Taylor, and present some ad-
ditional supportive simulations of experiments by Libet and
colleagues. Finally we will report on a recent observation in
such a model with noisy and spiking neurons without guid-
ance of external input, and show first results of auto- and
cross-correlation calculations in the domain of high firing
rates.
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1. A PRINCIPAL MECHANISM EMPLOYED
BY THE BRAIN?

Neural networks with feedback connectivity of local excita-
tion and surrounding inhibition have been discussed on a
conceptual level [1, 2, 3], and in connection with behavior
[4, 5, 6], brain functions [7, 8] and applications [9]. Amari
[1] has shown that there are several regimes with different
asymptotic solutions in such models. Of these regimes there
is one with a persistent localized area of neural activity (bub-
ble) even without external input. Once such a bubble be-
comes established it will enforce itself and will inhibit other
areas unless a cooperation of some other neurons win the
inhibitory competition and seize the previous active bubble.

This scenario of cooperation and competition is interesting
in several respects. Most of all, such a network realizes a dy-
namic integration of signals from a combination of population
coding with a soft winner-takes-all scheme. This form of in-
formation integration can, for example, produce a consistent
motor command in an environment with sensory informa-
tion which would otherwise trigger conflicting strategies in
an animal or robot. Kopecz and Schoner [4, 5] have specu-
lated that such an information integration mechanism might
be employed in primates to integrate endogenous and exoge-
nous information to produce a consistent motor command for
saccadic eye movements. On a physiological level converging
evidence is pointing towards the intermediate layer of the
superior colliculus (SC) as one central station for signal in-
tegration within the oculomotor system. These speculations
are now fueled by intriguing similarities of simulated saccade
initiation with human behavior data [4, 5, 6, 10, 11] and
recording data from the monkey’s SC [11].

Another interesting area where the dynamics of bubble com-
petition does show striking similarities to experimental data

was found by Taylor [7]. He argued that the bubble dy-
namic can account for many details of the findings by Libet
et al. [12, 13] of sensory experiences after direct stimula-
tion of the somatosensory cortex of awake subjects, which
were, until then, still unexplained. Taylor and Alavi [14, 15]
made a first step toward finding the neuronal locus of the
related competitive mechanism by showing that the thala-
mus - nucleus reticularis - cortex complex can give rise to an
competitive mechanisms.

Our speculation is that the mechanism of dynamic cooper-
ation and competition is employed by the brain in at least
two different functional systems. We would like to stress that
the detailed neural implementation leading to the necessary
effective interaction of neurons can differ, and we are not at-
tempting to model all the details of the brain areas under
investigation. Those models have been developed elsewhere
(see for example Grossberg et al. [16] for an advanced model
of saccade programming in the SC). Instead we will show
in this paper how well some brain functions can be related
to the principle mechanism of cooperation and competition.
Furthermore we will demonstrate that the mechanism of co-
operation and competition works also in an implementation
with spiking neurons. A further aim of this paper is to outline
some additional behavior of the model specific to the version
with spiking neurons.

We will introduce our simple implementation in section 2 and
review some results in applying this to simulations of saccade
reaction times (SRTs) in section 3. In section 4 we report
on some additional simulations of Libet’s findings. Recent
observations of the behavior of the model when driven by
some noise without external input are presented in section 5.
Finally, in section 6, we will shortly outline some first results
of calculations of auto- and cross-correlations in this model.

2. THE RECURRENT MODEL WITH
SIMPLE SPIKING NEURONS

In the following we will study a collection of N identical neu-
rons. Each neuron is described by a time dependent 'internal
state’, wu;(t), which can be associated with the membrane
potential of the cell. The time evolution of the membrane
potential before a spike and after the refractory period will
be described by

- du;
dt

= —wi(t) + Li(b), (1)

where 7 is a time constant and I; is sum of synaptic currents
into cell . The neurons influence other neurons proportional
to their activity A; which is associated with the mean firing
rate in most standard neural network models. For this type of
model we use a standard form of neuron activity, a sigmoidal



function of the inner states of the neurons:

1
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In the implementation of the model with spiking neurons
we use a binary value indicating the occurrence of a spike.
We also include noise in the model by defining the firing
probability in the interval At as

1
T 1+ exp(—Psui + O)

P(A; = €|ui) At. (3)

Furthermore we take into account a finite time, 4., for the
duration of the spike after a spike onset at ts. The potential
is thereby set to zero until after the absolute refractory time
t'refy

ui(ts <t <ts+tpep)=0. (4)

Finally, we will specify the sum of synaptic currents I; into
cell 4 by writing this current in the form

Ii(t) = ZWi,jAj(t_tdel)+Iiin(t)7 (5)

and chose o o
—(j—i)2/20
wij = aue =07/ 20, — w0 (6)

as parameterization of the synaptic efficacy (weight) w; ; from
neuron ¢ to neuron j. The essence of this formula is that there
is an effective excitatory influence for short physical distances
between cells, and that there is a long range inhibition effect.
We have included a synaptic delay t4¢; in some of the simu-
lations but did not found a strong influence on our results.
The external input are chosen as graded inputs around the
location [ of a model stimulus in the form

I(t) = ai(t)e” 07270 (7)

In the simulations discussed below we used a one dimensional
layer of N = 101 neurons for simplicity. However, as was
shown by Taylor [3] (see also [9]), similar results can be ex-
pected in higher dimensions.

3. A MODEL OF OCULOMOTOR
DYNAMICS

The above model was first employed by Kopecz and Schoner
[4, 5] to simulate human saccade data, and was further stud-
ied by Trappenberg et al. [6]. Klein et al. [11] have compared
the model in several experimental paradigms with human be-
havior data and cell recordings from the monkey’s SC. Due
to the limited space we will only give an example of a sim-
ulations of basic behavioral data, of which more details can
be found in a technical report [10].

In figure 1 we compared model simulations (solid line for the
model with average firing rates, and crosses with error bars
for the model with spiking neurons) with human behavior
data (open circles) analyzed by Taylor and Klein [17] from
classical experiments by Saslow [18]. In these experiments
human subjects were required to fixate targets presented in
various temporal relations to removal of a fixation stimulus
(gap/overlap paradigm). These experiments show that the
saccade reaction time (SRT), that is the time between target
onset and the beginning of the saccade, is longer in an overlap
condition compared with a situation of a gap between fixation
offset and target onset suggesting a strong disengagement
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Figure 1: Saccade Reaction Time (SRT) as function of the
time between fixation offset and target onset. The open cir-
cles are human performance data, the stars are simulation
results of the model with average firing rates, and the crosses
represent the results from the model with spiking neurons

effect. In the numerical experiments we define the saccade
onset as the time when the peripheral activity becomes larger
than the central activity (see [10] for more details).

The simulations achieve similar effects, suggesting that the
variability of the SRTs could origin (at least partially) in dy-
namic of competitive mechanisms. However, the question re-
mains if this mechanism is realized in the brain. One obvious
candidate is thereby the intermediate layer of the SC as it is
thought to be an area of converging exogenous and endoge-
nous signals, and saccade related neurons in this area [19]
behave similar to our model neurons [11]. First indirect sup-
portive evidence was reported by Arai et al. [20] who trained
a recurrent network with spatial-temporal data form the SC
and found a connectivity matrix similar to the one in eq.6.
Further evidence is now gathered by Dorris et al. [21] who
are recording buildup cells in a distractor paradigm. First
raw data have shown an inhibition effect on the buildup of
activity for far distractors (relative to the visual field of the
recorded neuron), and an enhanced activity for close distrac-
tors. These effects are very similar to those seen in simula-
tions [11]. From the size of the effect we hope to gather some
quantitative knowledge of the effective connectivity within
this layer of the SC. It would also be useful to derive the
effective interaction matrix from more detailed models of the
SC such as the one of Grossberg et al. [16].

4. A COMPETITION FOR
CONSCIOUSNESS?

John Taylor asked this question in [7] and demonstrated that
the dynamic of competing bubbles does show some of the in-
teresting effects of sensory awareness found by Libet et al.
[12, 13]. In these experiments the exposed somatosensory cor-
tex of awake human subjects were stimulated with a pulsed
electric current of varying frequency, amplitude and time du-
ration. Libet et al. [12] found that the liminal (i.e. minimal)
current, I, necessary to reach sensory awareness, scales with
the inverse square root of the stimulus frequency f,

I 2 ()
Furthermore, Taylor [7] extracted the rule
I~T 2 9)
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Figure 2: a) Time T for a stimulus at node number 20 to
win the competition over a stimulus at node number 80 (with
small fixed input) as a function of stimulus amplitude a;,. b)
Minimal amplitude a;, to win the competition within 1000ms
for varying frequencies f of the stimulus signal.

for the time T of onset of sensory awareness form the experi-
mental data, and compared this to simulations of the bubble
dynamics [7]. In Figure 2a we reproduced these results in
the model with average firing rates with an input stimulus
similar to that used by Libet, i.e. with a pulse duration of
0.5ms. We show the results for a 100Hz stimulus with vary-
ing amplitude a;, of the stimulus signal which Taylor argued
[7] to be proportional to the square of the current

2

Qin ~ 17 (10)

from a current flow analysis. The data agree well with the
rule (eq.9) extracted from the experimental data. In Figure
2b we show the frequency dependence of the minimal ampli-
tude necessary to win the competition within 1000ms after
stimulus onset and found also a very good agreement with the
second rule (eq.8) derived from the human behavior data.

5. BEHAVIOR OF THE NOISY SPIKING
NETWORK WITHOUT EXTERNAL
INPUT

As shown by Amari [1] there exist a domain in the parameter
space of the model with average firing rates which exhibits a
finite area of neural activity termed bubble here. We demon-
strated in [10] that such a regime also exist in the network
with spiking neurons, even in the presents of noise if the noise
level is not to high. However, compared to the model with
average firing rates, the stability of the bubble could be re-
duced because the membrane potential is reset to zero after
a spike occurred. The firing current for each neuron must
therefore be relative high compared to the firing threshold to
maintain an ongoing firing in the bubble.

We discussed in the previous sections how the competitive
model can integrate different inputs and drew our attention
to the superior colliculus and the thalamo-cortical loop as
possible sites were such mechanisms are used in the brain.
If such a mechanism is used it becomes obvious to ask how
such a system behaves without external input, which should
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Figure 3: Spike train in the model with spiking neurons in-
cluding strong noise. An external input in the center of the
neuron layer was removed after 1sec.

occur, at least partially, during sleep'. Without noise the
locus of activity is stable. However, even some small noise
can at least shift the location of the bubble. An example is
given in figure 3a which shows simulated spike trains. The
external input, which stabilizes a bubble in the center of the
neuron layer, was removed at 1sec. This results in a drifting
bubble of reduced size which in turn allows for more random
spikes in the periphery due to the reduced inhibition.

It is very interesting to observe the same simulation on a
larger time scale as shown in figure 3b. As can be seen there
is still a unique area of enhanced neural activity (bubble), but
this area jumps around on a time scale of about 2sec in this
simulation. It is so far unknown how large the domain of this
behavior is and if such jumping loci can be observed in the
brain. It could very well be a source of rapid eye movements
during REM sleep originating in the superior colliculus, or
the source of jumping attention during dreaming from the
thalamo-cortical loop. The time scale of rapid eye movement
was observed to be around 1sec which is not too far from the
scale found in the simulation. It is also intriguing to ask if
there is some relations to switching perception such as in the
visual perception of the Necker cube.

6. AUTO- AND CROSS CORRELATIONS

Cross-correlation (CC) analysis of spike patterns between
pairs of neurons have long been used by physiologist to iden-
tify possible synaptic connectivity of neurons in the nervous
system. Usher et al. [8] have calculated auto- and cross-
correlations in a similar model of the visual cortex and found
some signals of cross-correlations for small distances of neu-
rons as can be expected from the pattern of synaptic effica-
cies. In contrast to our simulations, they examined the model
in a regime of low firing rates. In this regime the probability
that neighboring neurons will be active while a neuron spikes
is low, so that the probability that this neuron will initiate a
spike of neighboring neurons can be high and should lead to
some cross-correlations within the cooperative bubble.

IThere might still be internal activity from other brain areas
driving those systems. However, we will explore the extreme case
of no input to the competitive system.
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Figure 4: a) b) c¢) Auto-correlations (ACs) and c) cross-
correlations (CCs) with different magnitude of external in-
put a;n. d) Histograms of inter-spike intervals averaged over
a small (solid line) and large (dashed line) area within the
bubble of activity.

This is in contrast to our simulations in the domain of large
firing rates were we found synchronization only for extremely
large external input as demonstrated in Figure 4. Figure 4a
displays the results for the auto-correlation function within
the center of the active bubble without external input, but
only the auto-correlation with a strong external input of
ain = 10 as shown in Figure 4b shows some oscillations.
Also, even with this strong synchronizing external input we
do not get strong cross-correlations as shown in figure 4c
where we compared the auto-correlation (dashed line) to the
cross-correlation of neighboring nodes (solid line) in a simu-
lation with even larger external input (a;, = 30). This shows
that the relative long refractory time in our model together
with the large firing rate results in a more independent firing
pattern in this domain of the model. This can also be seen in
the histograms of inter-spike intervals (ISIs) shown in Figure
4d. The solid line represents histograms of ISIs averaged over
9 central nodes which display a Gaussian shape. We only ob-
serve a long tail in the distribution if we average over more
nodes (dashed line for 23 nodes) because it included nodes at
the edge of the bubble which are influenced by fluctuations
of the bubble location. This might be one source of the long
tail in the ISIs not mentioned in [8].

7. OUTLOOK

In the search for the principles of brain processing, dynamic
cooperation and competition might be a prime candidate.
Converging evidence is suggesting that this mechanism might
be realized in the brain. It is fascinating how many details
of various brain functions, as found by behavioral and phys-
iological experiments, can be simulated by the simple model
discussed in this paper. It might teach us the lesson that a
competitive integration of sensory signals is a way to archive
goal directed control of a large system which has to function
in a changing environment. Research into neural correlates
of this mechanism as well as towards technical applications
are promising.
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