
CSCI	1108

Sensors
Characterizing	/	Modeling



Announcements

• Today’s	Topics
– Sensors
–How	to	model/characterize	a	sensor
–Using	sensors	(sampling,	debouncing,	etc)



Ultrasonnic range	finder

Camera
Gyroscope

Accelerometers
Biometric	Sensors
Cameras	&	Vision	Sensors
Contact	&	Proximity	Sensors
Current	&	Voltage	Sensors
Encoders	&	Disks
Force	Sensors
Gas	Sensors
Gyroscopes
Inclination	&	Tilt	Sensors
Inertia	Measurement	Units
Infrared	&	Light	Sensors
LIDAR,	Laser	Scanners	&	Rangefinders
Linear	&	Rotary	Resistors
Localization	&	GPS
Magnetic	Sensors	/	Compass
Pressure	Sensors
Real-Time	Clocks
Sound	Sensors
Stretch	&	Bend	Sensors
Temperature	&	Humidity	Sensors
Thermal	Array	Sensors
Ultrasonic	Range	Finders

Scanning	Laser	Range	Finders	
and	LIDAR



Characterizing	sensors
Example:	Proximity	(prox)	Sensors

• 7	horizontal	proximity	sensors
– Measures	distance	to	objects	using	infra-red	light
– 5	in	front	and	2	in	rear
– Range:	0	(nothing)	to	4000+	(object	very	close)
– Values	stored	in prox.horizontal[0:6]

• 2	ground	proximity	sensors
– Measures	light	from	the	ground

• ambient (surrounding	light)
• reflected (received	 infra-red	light	emitted	by	sensor)
• delta	(difference	between	ambient	and	reflected)

– 2	in	front
– Response	ranges:	0	(no	light)	to	1023	(full	light)
– Values	stored	in	array

• prox.ground.ambient[0:1]
• prox.ground.reflected[0:1]
• prox.ground.delta[0:1]



Sensors	are	Imperfect
• Sensors	have	two	kinds	of	errors

– Bias:	a	systemic	deviation	from	the	true	value	
• E.g.,	a	clock	that	runs	fast,	or
• A	thermostat	that	thinks	its	warmer	than	it	is.

– Variability:	random	deviation	from	the	true	value
• E.g.,	static	on	the	radio	and
• Flickering	low-oil	sensor

• Key	Ideas:
– No	matter	how	good	a	sensor	is,	it	is	imperfect
– Imperfect	sensors	introduce	uncertainty
– Our	programs	have	to	deal	with the	uncertainty



Models

• Sensors,	like	many	devices,	are	complicated
• Idea: To	use	sensors	(easily),	we	need	a	model	
of	the	sensor

• Def: A	model is	a	simplified	description	of	a	
complicated	object	that	describes	how	the	
object	will	behave

• Questions:
– What	properties	should	we	include	in	the	model?
– How	do	we	create	a	model	of	the	sensor?



How	to	Model/	Characterize	a	Sensor
1. Identify	the	sensor	we	want	to	model
2. Identify	the	sensor	property we	want	to	model
3. Identify	the	possible	variables	of	the	property
4. Fix	all	but	one	of	the	variables
5. Create	a	sequence	of	known	``actual’’	inputs	where	the

– One	variable	is	varied	and
– All	other	variables	are	fixed

6. Perform	a	sequence	of	measurements	(multiple	times)	on	the	inputs
7. Tabulate	the	results	and	compute	aggregates	if	appropriate	(average,	

median,	variance,	etc)
8. Plot	the	results
9. Repeat	steps	4	– 8,	allowing	a	different	variable	to	vary	each	time
10. Analyze	the	plot(s)	to	model	the	sensor	

Questions:
1. How	do	we	get	the	“measured”	values?
2. How	do	we	get	the	“actual”	values?
3. How	do	we	ensure	all	other	variables	are	fixed?	



Example:	Proximity	Sensor	Response1

1. Sensor:	Horizontal	Proximity	Sensor
2. Property:	Response
3. Variables	to	consider:

– Distance	to	target
– Target	size
– Target	material
– Target	shape

4. Fix	all	variables	except	“Distance	to	Target”
5. Create	a	sequence	of	known	inputs
6. Perform	a	sequence	of	measurements	for	

each	input
7. Tabulate	the	results	and	compute	means
8. Plot	the	results
9. Repeat	steps	4	- 8
10. Analyze	the	plot	to	derive	the	sensor	model

Inputl (cm) 2 3 4 5 6 7 8 9

Response 1 4051 3343 2735 2311 1973 1708 1421 1145

Response	2 4056 3340 2734 2320 1983 1697 1426 1152

Response	3 4062 3347 2721 2307 1981 1702 1408 1138

Average 4056 3343 2730 2313 1979 1702 1418 1145



Making	Use	of	the	Results2

• General	observation(s)
– Response	decreases	as	distance	increases
– Useful	for	visual	interpolation

• Create	a	linear	model
– Draw	a	linear	approximation
– Compute	slope	(m)	and	intercept	(b)	of	the	line
– Plug	into	equation	of	a	line

• Then	what?

(9,1000)

(2,3800)

m =
rise
run

=
y2 − y1
x2 − x1

=
1000−3800

9− 2
≅ −400

b = 4600

y =mx + b y = −400x + 4600

2600

(0,4600) bbmxy +´-=Þ+= 24003800
3800,2 == yx



Using Sensors
• Idea:	Perform	sensor	readings	when	events	occur

– Checking	a	sensor's	reading	is	called	polling the	sensor

• It	is	the	program’s	responsibility	to	interpret the	
sensor	reading,	i.e.,	
– Translate	the	value	returned	by	the	sensor	into	
meaningful	information

• A	simple	way	to	assign	meaning	is	to	use	
thresholds



Thresholds
• We	are	typically	not	interested	in	what	the	value	
of	a	sensor	reading	is.

• We	are	typically	interested
– when	that	value	changes,	or
– when	that	value	reaches	a	specific	threshold

• For	example,	
– We	don’t	care	if	the	car	ahead	of	us	is	50	meters	away	
or	150	meters	away.

– We	do	care	if	
• the	car	is	getting	closer,	or
• the	car	is	less	than	5	meters	away!



Thresholds	(cont.)
• Def: A	threshold is	a	fixed	constant	such	that	an	
event	is	triggered	when	a	measurement	from	a	
sensor	returns	a	value	that	is	above	(or	below)	
the	constant.	

• Examples:
– Object	too	close:	

• if	distance	<	threshold,	stop
– Loud	sound	occurs:	

• if	sound	level	>	threshold,	start	moving
– Black	line	detected:	

• If	light	level	>	threshold,	move	right,		else	move	left



What	are	the	thresholds	here?
onevent prox
if prox.horizontal[2] > 1000 then
motor.left.target = 0
motor.right.target = 0

elseif prox.horizontal[4] > 1000 then
motor.left.target = -100
motor.right.target = 100

elseif prox.horizontal[0] > 1000 then
motor.left.target = 100
motor.right.target = -100

else 
motor.left.target = 100
motor.right.target = 100

end

But	…	How	often	should	sensors	be	polled?



Polling	Frequency
• Polling	Frequency	depends	on

– The	response	time	of	the	sensor
– The	rate	at	which	the	environment	changes

• Response	time	dictates	the	maximum	useful	
polling	rate

• The	rate	of	change	dictates	the	minimum	rate	
needed	to	ensure	that	no	events	are	missed

• Question:What	if	the	maximum	useful	rate	is	
less	than	the	minimum	required	rate?



Polling	Frequency	vs.	Response	Time

• Observation:	There	is	no	point	in	polling	the	
sensor	quickly	if	its	response	time	is	slow
– Are	we	there	yet?		How	about	now?		Now?	Now?

• Polling	the	sensor	too	quickly	does	not	hurt,	but	
wastes	CPU	resources

• Our	sensors	have	a	fast	response	time	(mostly)

• When	the	response	time	is	slow,	our	programs	
need	to	take	this	into	account



When	Response	Time	Matters
• In	Follow-The-Line

– The	angular	velocity	of	the	light	sensor	is	quite	fast
– This	could	cause	the	sensor	to	move	over	the	black	line	too	

quickly	to	pick	it	up
– This	would	result	in	the	robot	losing	the	line

• How	do	we	ensure	that	the	robot	does	not	miss	the	line?



Sampling

• Sensors	must	be	polled	(sampled)	for	values
• The	sampling	rate is	the	frequency	of	the	polls
• A	higher	rate means	we	are	

– Less	likely	to	miss	a	change	in	inputs
– Using	more	CPU	time	to	poll	the	sensor

• If	the	rate	is	too	high,	there	is	no	time	to	do	
anything	else

42 37 61

sensor



Another	Example

3

2 2.5 2.5 1.25 1.25 6 0.5 1 2.5S1

2.25 5 2.5 4 1.25 5 0.5 2S2

2 2.5 2.5 1.25 1.25 6 0.5 1 2.52.25 5 2.5 4 1.25 5 0.5 2S*

When	is	the	signal	at	least	3?



What	If	We	Do	Detect	a	Change?

• Suppose	the	sensor	returns	a	different	value.
• Does	this	mean	that	the	environment	has	
changed?

• Are	you	sure?



Variability	of	Sensors
• Problem:	All	sensors	have	some	variability

– A	sensor	reading randomly	deviates	from	the	true	
value

• A	single	sensor	reading	may	not	report	the	true	
value	or	even	close	to	the	true	value

• Multiple sensor	readings	may	report	different	
values	for	the	same	true	value

• The	reported	values	will	be	distributed around	
the	true	value
– Most	readings	will	be	"close"	to	the	true	value,	
assuming	the	bias	is	0



Normal	Distribution

True	Value

Most	measured	values	are	
“close”	to	the	true	value

A	few	measured	
values	are	“far”	from	
the	true	value

http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg

The	better	a	sensor	is,	
the	narrower	the	curve



Dealing	with	Variability
• Key	Idea:	Want	to	aggregate	the	sensor	data

– Get	multiple	“second	opinions”
• Approach:

– Take	a	number	of	sensor	readings	(polls)	
• More	is	better

– Combine	readings	for	a	more	accurate	measurement
• Average	(mean)
• Median
• Mode

• Trade-off:
– Get	a	more	accurate	measurement
– Costs	more	time	to	perform

• Question:	Is	taking	multiple	readings	all	at	once	useful?



Sensor	Debouncing
• Key	Idea:	Need	to	filter	the	data	from	a	sensor
• Approach:

– Take	a	number	of	samples	(polls)	
• More	is	better

– Combine	samples	for	a	more	precise	measurement
• Average	(mean)
• Median
• Mode

• Trade-off:
– Get	a	more	precise	measurement
– Costs	more	time	to	perform


