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Abstract

This chapter discusses dynamic neural field models which are the mathematical quantifi-
cation of cortical and subcortical maps. Several examples from different brain areas show the
universality of these models that captures a principle information precessing principle in the
brain. The examples connect behavioural findings with physiological measurements in the
brain. Such models are therefore important to close the gap.

1 Introduction

Understanding how the brain works is a scientific quest on many levels. This certainly includes ar-
eas such as the biophysics of ion channels or the developmental properties of the nervous system.
But ultimately we would like to understand how specific brain mechanisms measured with neuro-
physiological methods give rise to cognitive mechanisms that can be measured on a behavioural
level. While there has been some progress in recent years, the gap between neurophysiology and
behaviour is often large. The aim of this book is to demonstrate how computational modelling
approaches can help in bridging this gap.

In this contribution I discuss an example of a fairly general model of processing in neural
tissues based on center-surround lateral interactions. I refer to this model as a dynamic neural
field (DNF) or center-surround neural field (CDNF) models. It is called a field model because
it describes a continuous (feature) space and incorporates continuous time dynamics. Describing
brain functions with continuous models in space and time is not only mathematically useful and
elegant, but it stresses the continuous character of cognitive processes. In contrast to many neural
network models, it does not depend on the number of nodes and displays some characteristics that
can be generalized to many brain functions.

I give several examples of how DNFs can elucidate neural response properties. For example,
I review how tuning curves result from lateral interactions in center-surround neural tissue. While
classical tuning curves describe only the maximal response of neurons, I will show in addition
that experimental results for the temporal evolution of neural responses are consistent with such
general models. Furthermore, important for this workshop is not only that single cell data can be
explained by such models, but that these models, at the same time, explain behavioural findings.
I will therefore give some examples of how the same model can explain physiological single cell
recording data as well as psychophysical functions.

The examples of cell recording data in this chapter are taken from a variety of neocortical
areas, including primary visual cortex, temporal cortex and parietal cortex, and a subcortical area
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related to eye movements, the superior colliculus. This in itself should highlight some universal-
ity with respect to the information processing principle discussed in this section. Besides tuning
curves I discuss perceptual choice tasks and experimental data from the recent literature on deci-
sion making. I also briefly discuss some issues in population decoding. Some of these data and
mechanisms have been explained previously with similar or related models. However, the reason
for reiterating them here is to highlight the explanation of these data within the same neural field
framework and within the same parametrization for all of the various application areas. Indeed,
it is good news that various researchers start to build converging consensus within computational
principles rather than building highly specialized models of specific physiological or behavioural
findings.

There are also some new parts to the story presented here. In particular, I concentrate to some
extent on a regime in these networks with relatively strong inhibition, which is not commonly
the focus in the application of such models. Furthermore, I mention new data from eye movement
studies that demonstrate how surprising nonlinearities in behavioural studies can be explained with
the neural field model of the superior colliculus.

2 Dynamic neural field model and cortical feature representation

2.1 The basic computational model

Center-surround neural field models have been introduced and discussed at least since the early
1970s (Wilson & Cowan, 1973; Grossberg, 1973). In the following I discuss a neural field model
of the formulation introduced by Amari (Amari, 1977) where the dynamics of an internal state
variable u(x) at ‘location’ x is give by

τ
∂u(x, t)

∂t
= −u(x, t) +

∫

y
w(|x− y|)r(y, t)dy + Iext(x, t). (1)

In this formula, Iext(x, t) represents an external stimulus as received by the neural field, and
r(x) is an external state variable. This rate is related to the internal state variable u(x) through
a gain function r = g(u). I use a sigmoidal gain function g(u) = 1/(1 + exp(−βu)) for the
demonstrations in this chapter. Other gain functions are sometimes biologically more appropriate
but will not change the principle findings in the examples presented here. Most of the discussions
in this chapter are done with 1-dimensional neural fields, but all of the discussions can easily be
generalized to higher dimensions where the 1-dimensional feature space is replaced by a higher
dimensional feature map. An example of a 2-dimensional model is discussed in the last section
of this chapter when discussing eye movements and a model of the superior colliculus. Also, we
always use period boundary conditions to minimize boundary effects. Thus the feature space is
formally a ring in one dimensions, where we frequently use a feature value of (0, 2π], or more
generally a torus in higher dimensions.

Equation (1) defines the dynamic evolution of the neural field, and it is important to note that
this formulation is continuous in time and space. To evaluate such models on a computer one needs
to discretize both space and time. For example, one can define a small but finite time step ∆t and
spacial resolution ∆x and write the differential equations as a difference or iterative equation for
each node with index i as

ui(t + ∆t) = (1− ∆t

τ
)ui(t) +

∆t

τ
(
∑

j

wijrj(t)∆x + Iext
i (t)). (2)

This equation reduces to the widely used equation for recurrent attractor networks in the stationary
limit or with time steps ∆t = τ . It is important to stress that the discretization is only a necessary
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step for computational purposes, but that the processes described by this model should approach
continuality of time and (feature) space which is appropriate to describe cognitive processes. Thus,
we have to make sure that numerical results do not change by altering the time step or including
more nodes. Also, the interpretation of each node is not that of a simple neuron, rather, it stands
for a collection (population) of neurons that receive similar input in a certain task (Wilson &
Cowan, 1972; Gerstner, 2000), or that of a cortical minicolumn (Johansson & Lansner, 2007)
However, we will see below some examples where such a population average describes quite well
the trial-averaged activity of neurons.

The lateral interaction kernel w(x, y), or its discrete version wij , is chosen to be a shifted
Gaussian

wex
ij = Aw

(
1√

4πσr

e−((i−j)∗∆x)2/4σ2
r − C

)
. (3)

Other popular choices are weight profiles in form of a Mexican-hat, but these functions result in
similar behaviour when the extent of inhibition and excitation are matched in the periodic feature
maps discussed here. Many studies assume this interaction structure from the start, and it is
possible that such structures are genetically coded, in particular if the feature space is topographic.
However, such weights can also be learned from activity-dependent Hebbian learning on Gaussian
patterns with width σr (Stringer, Trappenberg, Rolls, & Araujo, 2002; Trappenberg, 2002; Wu &
Trappenberg, 2007). Such learning might be, for example, important in the formation of place
fields in the hippocampus (Stringer et al., 2002).

Amari (Amari, 1977) discussed such neural field models in detail and showed that there are
several solutions to the dynamic equations. In particular, there is a regime of intermediary inhi-
bition values in which an area of activity will persist even in the absence of continuous external
input. Such an active area is sometimes called a bubble, a bump, or an activity packet, and this
persistent activity has been implicated with physiological working memory (Wang, 1999, 2001).
There are many variations of the basic model with different shapes of weights, various gain func-
tions or slightly different formulations of the dynamic equation. However, as long as there is
some balance between local excitation and long-distance inhibition the principle findings are very
similar. For further discussions of this point, see (Hansel & Sampolinsky, 2005).

Neural field models of lateral-inhibition type are in common use on various levels of descrip-
tion and application domains. For example, Wilson and Cowan (Wilson & Cowan, 1973) intro-
duced such a model from course-graining neuronal sheets of spiking neurons with excitatory and
inhibitory neuronal pools. In this sense the model can be viewed as physiologically based. On
the other hand, Gregor Schöner (Schöner, 2007) has argued for many years that such models are
a useful descriptions of behavioural phenomena, in particular since they describe the dynamics of
many behavioural findings. In this chapter I want to describe specifically some examples where the
model simultaneously describes physiological data of trial-averaged firing rates of single neurons
and behavioural data such as reaction times and detection accuracies.

As a final comment on the neurophysiological plausibility of such models, the origins of long-
range lateral inhibition may be subject to debate. Anatomically it seems that inhibitory neurons
have a more local projection area than lateral excitatory connections (McDonald & Burkhalter,
1993; Kisvrday & Eysel, 1993; Hirsch & Gilbert, 1991). However, mechanistically there are
several possible ways to accomplish extended inhibition. For example, Wilson and Cowan sited
experimental evidence (see page 62 in (Wilson & Cowan, 1973)) that excitatory to inhibitory con-
nections extend further than excitatory to excitatory connections. Or, Taylor and Alavi (Taylor &
Alavi, 1993) argued that long-range inhibition could be mediated by cortico-thalamic interactions
thorough the nucleus reticularis of the thalamus. In general, one could think about the long-range
global inhibition as an inhibitory background field, often described as a inhibitory pool (Deco &
Lee, 2002). Also, effective long-range inhibition can be seen experimentally (Nelson & Frost,
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1978; Grinvald, Lieke, Frostig, & Hildesheim, 1994).
When thinking about the cortical implementation of this model one is foremost bound to think

about this model as a representation of a cortical organization of a hypercolumn. Indeed, the dis-
cussions in the next section will illustrate this in some detail. Processing in hypercolumns are
often though of as as winner-take-all process (Hubel & Wiesel, 1977), and the neural field mod-
els discussed here implement such a mechanisms though lateral interactions. In this chapter we
will also discuss competition between object representations beyond the typical representation in
hypercolumns of early sensory areas. There are two ways of thinking about this. First, functional
structures of hypercolumns in higher cortical areas will of course represent much more abstract
concepts and global object features compared to hypercolumns in early sensory cortex. Secondly,
competitive interactions can also be interpreted, in a more abstract way, as competition between
hypercolumns or even whole objects as represented by a series of features represented by hyper-
columns (Johansson & Lansner, 2007).

2.2 Competitive feature representations in cortical tissue

Hubel and Wiesel (Hubel & Wiesel, 1962) found that some neurons in the primary visual cortex of
anesthetized cats respond strongly to moving bars in their receptive field with a specific orientation
and that the same neurons respond less when the orientation of the moving bar deviates from this
preferred direction. An example of such a tuning curve from experiments by Henry et al. (Henry,
Dreher, & Bishop, 1974) is shown by solid circles and an interpolated Gaussian curve in Figure
2.2. In this example the preferred direction of this cell is plotted as zero degrees, and the rate
diminishes with a bell-shaped curve with increasing distance from the preferred direction.
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Figure 1: Experimental data (solid circles) from Henry et al. (1974) plot the firing rate of a
neuron in cat primary visual cortex as a function of the orientation of moving line segments. Open
squares correspond to the corresponding measurements in a neural field model. The evolution of
the activity in the neural field is shown in the plot on the right.

Such tuning curves can be modeled in different ways. For example, we could assume that the
neuron receives input from cells that only fire to specific orientations, and that the input weight
of these connections is a bell-shaped function. However, since the orientation selectivity only
arises in V1, we follow here the common idea that local arrangements of V1 cells provide a focal
orientation selectivity as suggested by Hubel and Wiesel (see also (Nagano & Kurata, 1980))
but that the broadness of the tuning curves are mediated by lateral interactions (Bullier, 2006;
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Ben-Yishai, Bar-Or, & Sompolinsky, 1995). This general idea is captured by the neural field
model as illustrated in Figure 2.2. Each node in the model receives input from a certain area
of the visual field (its receptive field) and is most responsive to a specific orientation (tuning
curve). In the shown simulated experiment I probed the response of the neural field by activating
externally a very small region, essentially covering only one node in the simulations. The neurons
for these specific stimuli are very active, and, most importantly, the activity is also ‘bleeding out’
to neighboring nodes. The maximal response for different orientations of input for a neuron with
preferred orientation of zero degrees is plotted with open squares on top of the experimental tuning
curve, demonstrating how the neural field model can reproduce the experimental findings.

In our interpretation of tuning curves we see that there is a wide response of neurons even when
presenting a ‘pure’ image. This is important as such states are likely to represent probabilities of
specific events (Zemel, Dayan, & Pouget, 1998). Cortical neurons are also very noisy which
was combated with many trials in the experiments and by neglecting noise in the simulations.
Decoding the information from a population becomes crucial for reliable information processing
in the brain. I return to this point later in this chapter. The tuning curves discussed here only show
the maximal response during each stimulus presentation and I will now turn to some temporal
aspects that can illuminate other experimental findings.

3 Neural field models of perceptual choice and decision making

3.1 Temporal aspects of neural field responses

In the following experiments we have a closer look at the temporal developments in the neural
field. While doing this, we will generalize the application of this model to other feature represen-
tations in cortex. Higher cortical areas represent increasingly complex features beyond orientation
selectivity of V1 neurons, but we can still think of these representations in terms of neural fields.
The only difference is that the represented feature value (orientation in V1) should be replaced by
another feature value to which the other cortical area responds.

In this section I discuss cell recording data from Monkey’s inferior temporal (IT) area associ-
ated with object recognition. Figure 2 shows data from recordings in this area by Chelazzi et al.
(Chelazzi, Miller, Duncan, & Desimone, 1993). In their experiment they showed different objects
to monkeys and selected objects to which the recorded IT cell responded strongly (good objects)
and weekly (bad objects). In the illustration of Experiment 1, the good object is represented with
a square. The average firing rate of an IT cell to this good stimulus is shown in Figure 2C as solid
line. The period when the cue stimulus is presented is indicated by the left grey bar in this figure.
The neuron responds strongly to this stimulus, but the trial-averaged rate of this neuron decays
basically to the background level after the cue is removed.

The ‘bad’ object is illustrated with a triangle in Figure 2, and the trial-averaged response of
the same neuron recorded during Experiment 2 is shown as dashed line in Figure 2C. Instead of
increasing the rate during the cue presentation, this neuron seems to respond with a firing rate
below the usual background rate.

Several aspects of this response are captured by the neural field model shown in Figures 2C
and D. The solid line represents the activity of a node within the response bubble of the neural
field such as a node recorded at position O1 in Figure 2D. The activity declines after the external
stimulus is removed. This was achieved by using a relatively strong inhibition constant of c = 0.06
in the simulations. A slightly smaller inhibition constant of c = 0.05 would result in a sustained
activity bubble as used in working memory models. The activity of the dashed line corresponds
to the activity of a node outside the activity bubble. There is a diminished activity through lateral
inhibition during the stimulus presentations similar to the experimental data.
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Figure 2: Experimental paradigm and data from Chelazzi et al. (1993) and their interpretation in
the neural field model. Monkeys are given a single visual cue and, following a delay, the monkey
is shown two stimuli and must moves its eyes to the remembered stimulus. The average response
of an IT neuron is shown in panel (C) where the solid line corresponds to a ‘good’ abject and the
dashed line to a ‘bad’ object. The corresponding response in the neural field model are shown in
panels (D) and (E).

The details of the program and the chosen parameters are detailed in the Appendix. It is worth
noting that all the experiments in the different application areas are basically run with the same
model and comparable parameters.

3.2 Competitive aspects of neural field responses

The second half of the experiments by Chelazzi et al. is even more interesting. After a delay the
monkey is shown the two objects, the ‘good’ and the ‘bad’ object, at the same time (right grey area
in the panels on the right). The monkey is instructed to saccade to the cued objects. Interestingly,
the initial response of the IT neuron to the display is an increase in rate regardless of which object
was cued. However, after around 200ms the response in trials with good and bad object cues
diverge. The activity increase further in trials where the cue is a good object. In contrast, further
activity is suppressed in trials where the bad object was the cue.

The interpretation of these data with the neural field model is straight forward. Presenting two
objects to the neural field means that two different regions are stimulated simultaneously. We take
the (top-down) task instruction into account by making one of the inputs slightly stronger, only 1%
in the shown simulations. Thus the requirement to memorize the cue is not explicitly modeled in
these effects, rather, only the effect of this memory is taken into account. Indeed, it is possible and
common to use a similar model to store this short term memory which feeds into this IT map. This
module could, for example, simulate working memory in prefrontal cortex or working memory
loops between prefrontal and other cortical areas. The interesting point here is that we take only
a small bias in the input to the neural field into account. At first, this small difference in input
strength does not make a difference in the neural field response. However, after enough activity is
generated in the neural field, the two active centers begin to interact though lateral inhibition, and
the slight advantage of one center leads to a winning active area.
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I am not the first to offer this interpretation of the these data. Usher and McClelland (Usher
& McClelland, 2001) have recently argued that these data can be understood and described with
competitive integrators that correspond to the neural field models discussed here. Indeed, their
model represents a discrete implementation of the neural field model with strong inhibition. Usher
and McClelland also discuss nicely how the neural field model unifies two historical models of
decision making, accumulator models and diffusion models. With accumulator models, evidence
for stimuli accumulates over time and a decision is reached when evidence for a particular stim-
ulus exceeds a decision threshold. With diffusion models, it is not the absolute evidence that is
accumulated, but the relative difference between the evidence for each stimulus. The neural field
model is thus a dynamic implementation of an intermediate model where there is some coupling
between different areas of the neural field.

3.3 Decision making, psychophysics and uncertainty

My discussion of perceptual choice has centered on electrophysiological data, but with crude be-
havioural resolution. To provide a cognitive perspective, behavioural measurements with higher
resolution are required. Those are provided by motion discrimination experiments. In a typical
motion discrimination task, a display of dots is presented on a computer screen and some fraction
of the dots are repeatedly displaced. The dots appear to move in the direction of displacement,
typically to the left or to the right. Monkeys are trained to move their eyes in the direction of
perceived movement, thus indicating their choice. Experimentalists manipulate the coherence of
movement by controlling the percentage of displaced dots, allowing them to finely control the cer-
tainty of evidence. Recording response time and accuracy provides psychophysical measurements
in response to the controlled parameter (coherence in this case).

Psychophysical measurements from Roitman and Shadlen (Roitman & Shadlen, 2002) are
shown as dots in Figures 3A and B. The figures show the psychometric and chronometric func-
tions respectively, depicting accuracy and reaction time as a function of the certainty of evidence.
At low coherence levels, the monkey makes a lot of errors and has long reaction times. With in-
creasing coherence, the monkey’s accuracy increases and its reaction times are lower. Results from
corresponding neural recordings in monkey lateral intraparietal area (LIP) are shown in Figure 3C.
The data are similar to output from simulations, shown in Figure D. With increased coherence, the
activity of neurons with a preferred response to the direction of motion increases (solid lines).
The response of neurons with other preferred directions increases at first, before rapidly decreas-
ing (dashed lines). Three different values of the coherence parameter are depicted in the figure.
Stronger input (greater certainty) more quickly ‘defeats’ the weaker stimulus (dashed lines) lead-
ing to a quicker decision, as shown by the solid lines. Reaction times are equated with the time
required for activity to reach a threshold level, and decrease with increased coherence (Figure 3B).
If the evidence has not reached threshold by 800ms, the monkey responds according to the accu-
mulated evidence, shown in Figure 3A. In the figure, lines show model output, where accuracy is
poor.

The accuracy curves from the model are proportional to the evidence accumulated in LIP.
In the simplest case, the evidence from the neural population can be read out by calculating the
normalized maximum response for each perceptual choice, where the normalization provides a
probabilistic interpretation of the activity in LIP. This calculation is shown by the solid line in
Figure 3A. The curve describes the experimental data, providing a mechanistic description of LIP
activity in Roitman and Shadlen’s task.

Despite its ability to explain the data, the solid curve in Figure 3A does not run through the
dots. The monkey is perfectly accurate at even moderate coherence levels, but the solid line
approaches this limit smoothly. Thus, a decision based on LIP activity cannot be as simple as
suggested by the probabilistic interpretation. In the figure, the dotted line shows a linear transfor-
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Figure 3: Data from Roitman and Shadlen (2002) is explained by the neural field model. (A) The
psychometric function plotting accuracy as a function of certainty of evidence. Experimental data
are shown as dots. The solid lines shows normalized output from the model. A linear transfor-
mation weighted in favor of high-rate activity is shown by the dashed line. (B) The chronometric
function plotting response time as a function of certainty of evidence. Again, dots and lines corre-
spond to data and output from the model respectively. (C) Neural response over time for different
levels of certainty of evidence. Solid and dashed lines show the spike rate of neurons respon-
sive to the chosen and unchosen stimuli respectively. (D) Output from the model in response to
simulation of the task in C.
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mation of the output of the model, where high-rate activity is given a greater weight than low-rate
activity. This curve fits the data more accurately, but does not tell us anything new. In this re-
gard, it is sometimes easy to fit curves to experimental data with enough parameters, but a simpler
model may be more scientifically useful, serving to identify information processing principles in
the brain.

4 Population decoding with strong inhibition

As pointed out at the beginning of this chapter, the models discussed here describe instantaneous
rates of populations of neurons. Single neurons in the cortex have typically low firing rates and
their firing is also very noisy. In the previous examples I averaged over such neuronal populations
and I also compared the model behaviour to a trial-based average of corresponding experiments.
However, the question arises how a neural sheet receiving very noisy input can achieve reliable
feature estimation from noisy population activity.

A possible answer to noise population decoding comes from the recognition that center-
surround neural field models are ideal to solve this noisy decoding task. The theory of popu-
lation decoding with neural fields was developed recently in some detail (Pouget, Zhang, Deneve,
& Latham, 1998; Deneve, Pouget, & Latham, 1999; Deneve, Latham, & Pouget, 1999; Pouget,
Dayan, & Zemel, 2000; Deneve, Latham, & Pouget, 2001; Wu, Amari, & Nakahara, 2002). It is
common in these applications of neural field models to use a normalizing gain function that rep-
resent divisive inhibition so that the resulting activity packet has a Gaussian shape. It can then be
shown (Pouget et al., 1998; Wu et al., 2002) that the activity pattern is equivalent to a maximum
likelihood (ML) estimate of Gaussian tuning curves.

Population decoding in the above mentioned papers is usually done by applying input as initial
states of the recurrent network. The decoded signal is then usually considered to be the asymp-
totic state of sustained activity packets (bubbles). Here I summarize my recent study (Trappenberg,
2007) where I investigated the population decoding with DNFs with several additions and simpli-
fications that add to their biological realism and investigate which regime of the DNF models is
best suited for population decoding. I thereby investigate these networks with sustained input over
a period of time, either with fixed noisy input or with temporal changing input. All the simulations
in this section are done without divisive inhibition that is commonly used in the related literature,
showing that these form of global operation is not necessary for the population decoding. The ma-
jor question I ask in this section is if there is an optimal value of global inhibition which controls
the amount of competition in the network.

4.1 Population decoding with recurrent networks

I consider again the generic network model described above. As noted previously, this model
exhibits several regimes characterized by different possible asymptotic states (Amari, 1977). If
the inhibition C is low compared to excitation in the network, then the excitation will spread
through the network resulting in runaway activity. In contrast, if inhibition is dominating, then
any activity in the field will decay without external reinforcement. In an intermediate regime it is
possible to have activity packets where localized activity is stable. I call this mode of the model
the memory regime. The later two regimes are depicted in Figure 4 in the context of population
decoding. In these experiments I supplied a static noisy input to the field over 20 timesteps. This
input was chosen as a Gaussian around the middle node (x0 = 50) with additive white noise, η, of
strength nη = 0.5,

Iext = I0 + A(e−((i−j)∗∆x)2/2σ2
+ nηη, (4)
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where I0 is a background field and η is a normal distributed random number. When an inhibition
constant of c = 0.05 is used, the field developed into a clean bubble around the middle node
after the input was removed at time t = 20, demonstrating perfect decoding. The sustained
localized activity in the neural field without external input demonstrates the above mentioned
memory regime.
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Figure 4: Noisy population decoding with weak and strong inhibition in neural fields. The noisy
input (solid line in the left graph), which is derived from the dashed line in the left graph, is applied
until t = 20 to the neural fields. The time evolution of the neural field is shown in the right graphs,
with moderate inhibition constant, C = 0.05, in the upper graph and larger inhibition constant,
C = 0.07, in the lower graph. The activity of the neural field is thereby depicted on a grey scale
with different ranges in the two figures. Therefore, the noisy input until t = 20 in the upper graph
is not well visible since the activity over time is dominated by the sustained bubble at later times.

Traces of the noisy input are not apparent in the c = 0.05 case, and it seems one has to wait
until the bubble forms to perform accurate decoding. This is different when running the same
simulation with larger inhibition. Figure 4 shows the case for c = 0.07. Traces of the noisy input
are now also visible during the time the external input is supplied, which is partly enhanced by the
fact that a smaller range of values is depicted by the gray scale in the figure. The inhibition is now
too large to sustain an activity packet after input is removed. However, the increased competition
facilitates a cleaning of the signal even during the time when the signal is applied so that some form
of population decoding is supported. While this might be less accurate than in the previous case,
an advantage would certainly be that the decoding can be achieved much earlier. This assertion is
investigated in the next section.

4.2 Quality of decoding with varying inhibition over time

To assess the quality of decoding with time and different inhibition constants I ran decoding ex-
periments over 100 trials in each condition. While I have used signals with static noise in Figure
4, I report now on the results when changing the noise after each unit of time, simulating ongo-
ing fluctuations in the input signal over time. This represents a more plausible implementation of
decoding conditions in the brain, although I found similar results in the static noise case.
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Figure 5: Temporal aspects and decoding quality with different levels of inhibition. (A) Time
course of the decoding error (in radiant degrees) with an inhibition constant of C = 0.06. The
decoding error is decreasing even while the external input is supplied until t = 20. The noise level
in the shown example is nη = 0.5. (B) The decoding error as a function of noise strength, nη,
when decoding is performed at t = 0, which corresponds to the original signal before modified by
the recurrent network, and at t = 20 when the recurrent network was able to process the signal.
(c) The improvement factor is calculated as the average decoding error at a specific time t > 0
compared to the average decoding error of the original signal, t = 0.

11



To assess the decoding quality I use a center of mass scheme to determine the prediction of the
feature value encoded in the neural field. This was done for the original input signal and at each
time step during the dynamic decoding in the recurrent network. An example trace of the decoding
error is shown in Figure 5A. For the shown strength of inhibition, the decoding error continuously
decreases even while external input is supplied. The decoding error only improves slightly after
the external input is removed at t = 20.

As can be expected, the decoding error increases with increasing noise level as shown in Figure
5B, but the decoding error at t = 20 is always much smaller than the center of mass decoding of
the original signal. Finally, a major question motivating this study was to determine which network
regime, in terms of inhibition strength, would be most suitable for decoding in such networks. The
results of these studies are summarized in Figure 5C which shows the decoding improvement at
different time steps for different inhibition parameters. Early on there is little dependence of the
results on the strength of inhibition, but later there is some advantage for inhibition values around
0.06. Interestingly, this is close to the transition region between the domain of decaying input and
the domain of sustained activity.

5 The Interaction of bottom up and top down manipulations on sac-
cade reaction times in monkeys

The last application of the neural field model that I want to mention here is recent work with
Robert Marino and Doug Munoz (Marino, Trappenberg, & Munoz, 2006). Robert studied eye
movements with monkeys in a gap paradigm where he manipulated two principle factors, the
number of possible locations where a target could appear in each trial, and the intensity of a
target. The resulting median saccade reaction times (SRT) is shown in Figure 5D. Reaction times
are fairly long with faint targets, but SRTs become faster with increasing intensity. However,
the surprising effect Rob discovered is that the rate of decrease slowed down and reaction times
became even slightly longer for very strong intensities. Another surprising non-monotonicity also
appeared when analyzing the reaction times to the number of possible target locations shown in
Figure 5F. While reaction times first increase with increasing number of possible target locations,
saccade onsets are again faster for 8 possible target locations.

These results are stunning in itself, but are also not that obvious to reconcile with the model
of the intermediate layer of the superior colliculus (SC for short in the following) that we devised
some time ago (Trappenberg, Dorris, Klein, & Munoz, 2001). The SC is thought to be a topograph-
ically organized motor map that drives fast eye-movements, so called saccades. We found that a
large variety of effects of saccadic eye movements can be explained when considering that this
motor map integrates a variety of endogenous and exogenous signals with a competitive mech-
anisms described by the DNF models considered in this chapter. Indeed, we even found direct
evidence of the center-surround interaction structure (Trappenberg et al., 2001; Dorris, Olivier, &
Munoz, 2007).

When applying this model to the new experimental conditions with increased levels of exter-
nal input to the neural field simulating increased target intensities, then the buildup of SC activity
become faster with increasing intensity and there is no reason that reaction times become slower
again. In the case of increasing number of possible target locations we expect an increasing num-
ber of input representing the expectation of a target at different locations which increases the
inhibition within the neural field. This in turn should increase in reaction times with an increasing
number of target locations. However, the decrease in reaction time with 8 possible target locations
is stunning.

The puzzle can be resolved by considering area effects. If intensities will not only increase the
strength of input but will mainly alter the area of the stimulated region within the SC as illustrated
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Figure 6: Data of Behavioural experiments and 2d DNF simulations of saccadic eye movements.
The upper row shows the 2d DNF neural sheet activity with a (A) narrow and (B) wider input. (C)
Neural sheet activity with 4 endogenous and 1 exogenous inputs. (D) Behavioural monkey data
and (E) DNF simulation data with different target intensities. Larger target intensity was thereby
simulated with wider input in the DNF simulations. (F) Monkey data and (G) DNF simulation
data of expriments with a varying number of possible target locations.
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in Figure 5A and B, then we get a reaction time curve shown in Figure 5E that resembles the
nonlinearity of the experimental results. The reason for the slowdown in reaction times with the
largest intensities comes thereby from the fact that the activated area extends to the inhibitory
surround in the neural field. As long as the input is small, increasing input will add to the buildup
of SC activity and thus will increase SRTs. However, when the activated area becomes comparable
with the extend of the center-surround scale, then SRTs will become longer again.

A corresponding explanation can be given to the effect of altering the number of possible target
locations. At first there is an increase in areas that are stimulated by endogenous input (top-down
input that represents expectation) as shown in Figure 5C, but a further input will not alter much
inhibitory input from remote areas but will help the winning location to build up faster. Thus, the
model predicts an increase in the area of activation with increased intensity. Robert is currently
running experiments to investigate this prediction.

6 Conclusion

Measuring behavioural responses in specific circumstances is a major tool to study cognition. Re-
sults of such studies are valuable in itself. For example, knowing the specific parameters of a
speed-accuracy tradeoff can help to design appropriate systems for human-computer interactions.
On the other side of neuroscience, neurophysiological studies are a major tool in understanding
brain mechanisms. In particular, single cell recordings in behaving monkeys and functional brain
imaging in behaving humans have started to map brain activities in specific tasks. Such stud-
ies are in itself valuable. For example, such studies can illuminate effects of neurodegenerative
diseases. But to understand how the brain thinks we have ultimately to close the gap between
neurophysiology and behaviour, and computational modelling approaches are a central tool in this
domain.

In this chapter I have given some examples where models are able to explain the principal
trends in cell recordings and psychophysical curves. Making contact with both levels is important.
This allows us to embed behavioural findings into physiological mechanisms on the one hand, and
on the other hand this allows us to specify the consequences of neuronal activity on behaviour. It
also provides us with a functional explanation of behavioural findings. For example, cell record-
ings in the perceptual choice task have shown that there is first a common buildup of activity before
they split, and on a behavioural level that there is an accuracy-speed tradeoff in responses to such
perceptual choices. The model quantifies the hypothesis that the perceptual choice is facilitated
by competitive mechanisms in the neural representation of the stimuli, and that these mechanisms
will directly influence behaviour. Using computational specific implementation of such models
will even allow us to specify these relations quantitatively.

The model studied here is fairly simple. It consists of a neural sheet with center-surround
lateral interactions. The continuous formulation of this model is useful as this allows mathematical
elegant treatments and also to make it somewhat universal. While the model is simple, I find it
interesting to see that it can be applied to so many different areas in neuroscience and cognitive
science. I believe that this demonstrates that this model captures principal brain mechanisms
which are important for brain-style information processing. The fact that this model can also
explain so many effects measured in behavioural studies and neurophysiological studies shows
that the experimentally measured effects are understood. Thus, the simplicity of the model is not a
drawback; indeed it should be a major attraction of this model. This fact also highlights that, while
the experimental effects look on a first glance exciting, it might be worthwhile to investigate new
questions where the behaviour can not be explained with such simple models and might therefore
highlight some novel information processing mechanisms in the brain. Models should indeed
guide us more in discovering such novel mechanisms by making concrete predictions that can be
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verified experimentally.

APPENDIX: The basic program

The following is a complete listing of the program to simulate the experiment by Chelazzi et al.
(Chelazzi et al., 1993). The other experiments use basically the same program.

The following listing is the main program with the specific experimental settings. After defin-
ing some constants, Hebbian learning is used to set up the center-surround connectivity matrix that
drives the experiments. Training on Gaussian training patterns leads to a Gaussian connectivity
matrix.

After training we define some input patterns and then call a numerical differential equation
solver to integrate with neural field over specific times with the various inputs and plot the results
at the end of the program. The four short functions called in the main program are listed further
below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1-d Continuous Attractor Neural Network with Hebbian learning
% two gaussian signal: decision network
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear; close all;
nn = 100; dx=2*pi/nn; % number of nodes and resolution in deg

%weight matrices
sig = 2*pi/20;
w_sym=hebb(nn,sig,dx);
w_inh=0.07;%use 0.04, 7,6,3; 3*(sqrt(2*pi)*sig)ˆ2/nn;
w=500*(w_sym-w_inh);

%inputs
perc=0.01; Is=11;
Ia=(1+0.5*perc)*Is;
Ib=(1-0.5*perc)*Is;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% Experiment %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

param=0;
%%%% no external input

u0 = zeros(nn,1)-10;
I_ext=zeros(nn,1);
tspan=[0,40];
[t,u]=ode45(’rnn_ode_u’,tspan,u0,[],nn,dx,w,I_ext);
r=f1(u);

%%%% external cue
u0 = u(size(t,1),:);
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I_ext=zeros(nn,1);
loc1=pi/2;%+pi/16;
loc2=3*pi/2;%-pi/16;
I_ext=I_ext+in_signal_pbc(loc1,Is,sqrt(2)*sig,nn,dx);
tspan=[40 70];
[t2,u]=ode45(’rnn_ode_u’,tspan,u0,[],nn,dx,w,I_ext);
r=[r;f1(u)];
t=[t;t2];

%%%% no external input
u0 = u(size(t2,1),:);
I_ext=zeros(nn,1);
param=0;
tspan=[70,370];
[t2,u]=ode45(’rnn_ode_u’,tspan,u0,[],nn,dx,w,I_ext);
r=[r;f1(u)];
t=[t;t2];

%%%% both external inputs
u0 = u(size(t2,1),:);
I_ext=zeros(nn,1);
loc1=pi/2;%+pi/16;
loc2=3*pi/2;%-pi/16;
I_ext=I_ext+in_signal_pbc(loc1,Ia,sqrt(2)*sig,nn,dx);
I_ext=I_ext+in_signal_pbc(loc2,Ib,sqrt(2)*sig,nn,dx);

tspan=[370 420];
[t2,u]=ode45(’rnn_ode_u’,tspan,u0,[],nn,dx,w,I_ext);
r=[r;f1(u)];
t=[t;t2];

%%%% no external input
u0 = u(size(t2,1),:);
I_ext=zeros(nn,1);
param=0;
tspan=[420,440];
[t2,u]=ode45(’rnn_ode_u’,tspan,u0,[],nn,dx,w,I_ext);
r=[r;f1(u)];
t=[t;t2];

%%% plot results

surf(t’,1:nn,r’,’linestyle’,’none’); view(0,90);
figure
plot(t,r(:,round(loc1/dx))); hold on;
plot(t,r(:,round(loc2/dx)),’r’)

The numerical ODE solver calls the file rnn ode u.m that contains the differential equation:

function udot=rnn(t,u,flag,nn,dx,w,I_ext)
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% odefile for recurrent network
tau_inv = 1./2; % inverse of membrane time constant
r=f1(u);
sum=w*r*dx;
udot=tau_inv*(-u+sum+I_ext);

return

The function f1.m simply contains the sigmoidal gain function which can easily be replaced
by other gain functions:

function f1=rnn(u)
% gain function: logistic

beta =.1;
alpha=.0;%-100*(u>0);
f1=1./(1+exp(-beta.*(u-alpha)));

return

The function in signal pbc.m produces a gaussian signal with periodic boundary condi-
tions:

function y = in_signal_pbc(loc,ampl,sig,nn,dx)
y=zeros(nn,1);
for i=1:nn;

di=min(abs(i*dx-loc),2*pi-abs(i*dx-loc));
y(i)=ampl/(sqrt(2*pi)*sig)*exp(-diˆ2/(2*sigˆ2));

end
return

Finally, we also included Hebbian learning to choose the weight matrix:

function w = hebb(nn,sig,dx)
% self organization of symmetric cann interactions

lrate=1; % learning rate
w=zeros(nn);
%%%%%%% learning session
for epoch=1:1

for loc=1:nn;
r=in_signal_pbc(loc*dx,1,sig,nn,dx);
dw=lrate.*r*r’;
w=w+dw;

end
end
w=w/nn;

return
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